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Ten problems

I. Perfect matroid designs

II. a) In�nite hypermetrics
b) l1-embedding of complexes

III. a) Fullerenes: IQ , Skyrmions, viruses
b) Space fullerenes

IV. a) Zigzags and railroads in fullerenes
b) Zigzags and Lins triality of maps

V. a) Three classes of exotic plane graphs
b) Ambiguous boundaries of polycycles

VI. Extreme physical distances
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I. Perfect

Matroid Designs

P.J. Cameron and M. Deza, Designs and Matroids, in
Handbook of Combinatorial Designs, 2nd ed. by C. J.
Colbourn and J. Dinitz, Discrete Math. and Appl. 42,
Chapman and Hall/CRC, 2006, Ch. VII.10 (847–851).
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Perfect Matroid Designs

A perfect matroid design, or PMD, is a matroid M ,
of rank r such that all �ats of rank i , 0 � i � r , have the
same cardinality f i .
The tuple (f 0; f 1; : : : ; f r ) is the type of M .

The geometrisation of a PMD of type (f 0; f i ; : : : ; f r ) is a
PMD of type (f 0

0; f 0
1; : : : ; f 0

r ), where
f 0

i = ( f i � f 0)=(f 1 � f 0). In particular, f 0
0 = 0 , f 1 = 1 .

PMDs are (Deza, 1978) the extremal case for families A
of k-subsets of given v-set intersecting pairwisely in
l0; l1 : : : ; lt elements. Namely, for v > v 0(k), it holds:

jAj �
Y

0� i � t

v � l i
k � l i

with equality if and only if A is the

hyperplane family of a PMD with type (l0; l1; : : : ; lt ; k; v).
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Known necessary conditions for PMD

If there exists a PMD of type (0; 1; f 2; : : : ; f r ), then:

1.
Y

i � k� j � 1

f l � f k

f j � f k
is a non-negative integer for

0 � i < j � l � r ;

2. f i � f i � 1 divides f i +1 � f i for 2 � i � r � 1;

3. (f i � f i � 1)2 � (f i +1 � f i )( f i � 1 � f i � 2) for 1 � i � r � 1.

The above necessary conditions are not suf�cient;
for example, (R. M. Wilson), no PMD of type (0; 1; 3; 7; 43) or
(0; 1; 3; 19; 307) exists.
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All known geometric PMDs

They are truncations of the following 5 examples:

Free matroids, with f i = i for all i .

Finite projective spaces over a �eld GFq, with f i = qi � 1
q� 1 .

Finite af�ne spaces : the points are the vectors in a
vector space of rank r over GFq and f i = qi .

Steiner systems S(t; k; v): the hyperplanes are the
blocks. These PMDs have rank t + 1 and f i = i for i < t ,
f t = k, f t+1 = v.

Trif�ds (Hall triple systems): of type (0; 1; 3; 9; 3n ).
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Trif�ds and their algebraic siblings
So, a trif�d is any PMD of rank 4 with type (0; 1; 3; 9; 3n ).
Those PMDs are equivalent to each of following structures:

Hall triple system: a Steiner triple system S(2; 3; 3n) on
E , jE j = 3n , such that, for any point a 2 E , there exists
an involution for which a is unique �xed point.

Finite exponent 3 commutative Moufang loop: a �nite
commutative loop (L; �), such that, for any x; y; z 2 L ,
it holds (x � x) � x = 1 and (x � x) � (x � z) = ( x � y) � (x � z).

Distributive Manin quasigroup: a groupoid (Q; � ), such
that all translations are automorphisms and the relation
x � y = z is preserved under permutation of the variables

Restricted Fischer pair (G; F ): a group G having
commutative center f 1g and generated by a subset F
with x2 = 1 = ( xy)3 and xyx 2 F (for any x; y 2 F ).
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The problem of PMD existence

To decide the wide gap between known examples of
PMD and necessary conditions. For example, it is not
known whether there is a PMD of type (0; 1; 3; 13; 183),
(0; 1; 3; 13; 313), or (0; 1; 3; 15; 183).

U. S. R. Murty, H. P. Young and J. Edmonds,
Equicardinal matroids and matroid-designs, in Proc.
2nd Chapel Hill Conference on Combinatorial
Structures and Applications, 498–547, Gordon and
Breach, New York, 1970.

M. Deza and G. Sabidussi, Combinatorial structures
arising from commutative Moufang loops, Chapter VI in
Quasigroups and Loops: Theory and Applications, ed.
by O.Chein et al., Sigma Series in Pure Mathematics 8,
151–160, Heldermann, Berlin, 1990.

– p. 8



IIa. Hypermetrics
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Hypermetric inequalities

If b 2 Zn ,
P n

i=1 bi = 1 , then hypermetric inequality is:

H (b)d =
X

1� i<j � n

bi bj d(i; j ) � 0 :

If b = (1 ; 1; � 1; 0; : : : ; 0), then H (b) is triangle inequality.

If b = (1 ; 1; 1; � 1; � 1; 0; : : : ; 0), then H (b) is pentagonal
inequality.

The hypermetric cone HY Pn is the set of all d
such that H (b)d � 0 for all b.

The cone HY Pn has full dimension
� n

2

�
.

HY Pn is de�ned by an in�nite set of inequalities,
but it is polyhedral (Deza-Grishukhin-Laurent, 1993).
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Three cones

A cut semi-metric on f 1; : : : ; ng, for S � f 0; : : : ; ng, is:

� S(i; j ) =

(
1 if jS \ f i; j gj = 1;
0 otherwise .

Cut cone CUTn is generated by all � S; metric cone MET n is
generated by all n-vertex semi-metrics. Deza, 1960:

CUTn � HY Pn � MET n for all n � 3;

HY Pn = MET n if and only if n = 3; 4;

CUTn = HY Pn if and only if 3 � n � 6.

The facets (3
� n

3

�
, 1 orbit) of MET n and extreme rays

(2n� 1 � 1, bn
2c orbits) of CUTn are simple.

But direct computation of HY Pn , n � 7, is too hard.
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The coneHY P7

Deza and Dutour, 2004: HY P7 has 3773facets in 14 orbits
below and 31170extreme rays in 29 orbits (incl. 3 of CUT7).

(1 ,1 ,� 1 ,0 ,0 ,0 ,0 ) (1 ,1 ,1 ,� 1 ,� 1 ,0 ,0 )
(1 ,1 ,1 ,1 ,� 1 ,� 2 ,0 ) (2 ,1 ,1 ,� 1 ,� 1 ,� 1 ,0 )
(1 ,1 ,1 ,1 ,� 1 ,� 1 ,� 1 ) (2 ,2 ,1 ,� 1 ,� 1 ,� 1 ,� 1 )
(1 ,1 ,1 ,1 ,1 ,� 2 ,� 2 ) (2 ,1 ,1 ,1 ,� 1 ,� 1 ,� 2 )
(3 ,1 ,1 ,� 1 ,� 1 ,� 1 ,� 1 ) (1 ,1 ,1 ,1 ,1 ,� 1 ,� 3 )
(2 ,2 ,1 ,1 ,� 1 ,� 1 ,� 3 ) (3 ,1 ,1 ,1 ,� 1 ,� 2 ,� 2 )
(3 ,2 ,1 ,� 1 ,� 1 ,� 1 ,� 2 ) (2 ,1 ,1 ,1 ,1 ,� 2 ,� 3 )

First 10 orbits above are also of facets of CUT7 (among its
38780facets in 36 orbits).
MET 7 has 105 facets (1 orbit) and 55226extreme rays (46).
HY P8 has � 7126560extreme rays in � 381orbits.
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Finite hypermetrics
Assouad and Deza, 1979: a rationally-valued d 2 MET n
belongs to CUTn iff �d , for a scale � , is an isometric
subspace of the path-metric of a hypercube graph Hm .

Assouad, 1982: d 2 HY Pn iff d2 is isometric subspace
of Euclidean space (Rn� 1; l2), generating a lattice.
If d = dpath (G) of n-vertex graph G, then d 2 HY Pn if
and only if above lattice is a root lattice.

If d = dpath (G) of n-vertex graph G, then d 2 MET n.
Deza and Terwilliger, 1987: dpath(G) 2 HY Pn iff 2d is an
isometric subspace of a direct product of copies of 1

2Hm

(m � 7), K m� 2 (m � 7) and the Gosset graph G56.
Shpectorov; Deza-Grishukhin, 1993: dpath(G) 2 CUTn if
and only if 2dpath(G) is an isometric subspace of a direct
product of copies of 1

2Hm and K m� 2 only.
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Problem: in�nite hypermetrics
Wanted: in�nitary version of above theory.
Elements of HY P1 correspond to "towers of lattices"
since any �nite sub-hypermetric correspond to a lattice.
Example of dif�culties: garland of hyperoctahedra
K m� 2, m ! 1 , is not scale-isometric subspace of H1
(even of Z1 ), while any its n-points metric subspace
belongs to CUTn (equivalently, l1-embeddable).

Some inf. hypermetrics are not Lipschitz-embeddable
into l1, while any their �nite subspace is l1-embeddable.
Arora, Lovasz et al, 2005, using Deza-Maehara, 1990:
for every n � 2, some n-points hypermetrics reguires
distortion at least of order (logn)0:6 for embedding into l1.

If (X; d) is a �nite hypermetric space, then (X; d2) is an
isometric subspace of an Euclidean sphere (Sm ; l2).
For which in�nite hypermetrics it holds?

– p. 14



A Banach space is isometric to a subspace of a Hilbert
space if and only if it satis�es the parallelogram law.
But, Neyman, 1984: any lp with p 6= 2 can not be
characterized by a �nite number of eq. or inequalities.
But all � n-points l1-metrics are: < 1 linear inequalities.

Mendel and Naor, 2006: metric cotype 2, �rst non-trivial
non-linear (on squared distances) inequality in l1.

More information on hypermetrics, l1-embedding and
scale hypercube embedding are in books:
M. Deza and M. Laurent, Geomety of Cuts and Metrics,
Springer-Verlag, 1997, and its follow-up
M. Deza, V.P. Grishukhin and M. Shtogrin, Scale
isometric polytopal graphs in hypercubes and cubic
lattices, Imperial College Press, World Scienti�c, 2004.
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IIb. l1-embedding

of complexes

M. Deza, M. Dutour and S. Shpectorov, Isometric
embedding of Wythoff polytopes into cubes and half-cubes,
Ars Mathematica Contemporanea 1 (2008) 99–111.
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l1-embedding of graphs
A metric d is l1-embeddable if it embeds isometrically
into the metric space lk1 for some dimension k.

A n-points metric d is l1-embeddable iff d 2 CUTn
(The path-metric dG of) a �nite graph G is
l1-embeddable iff exists its scale � embedding into a
hypercube Hm , i.e., a vertex mapping � : G ! f 0; 1gm ,
such that d(� (x); � (y)) = �d G(x; y).

Scale 1 embedding is isometric hypercube embedding,
scale 2 embedding is isometric half-cube embedding.

Hm embeds in J (2m; m) and J (m; s) embeds in 1
2Hm .

The Johnson graph J (m; s) is formed by all s-subsets of
f 1; : : : ; mg with subsets S, T being adjacent if jS� Tj = 2 .

A complex X embeds into Hm or 1
2Hm if its skeleton

embeds into hypercube Hm with scale 1 or 2.
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Regular (convex) polytopes
A regular polytope is a polytope, whose symmetry group
acts transitively on its set of �ags. The list consists of:

regular polytope group
regular polygon Pn I 2(n)

Icosahedron and Dodecahedron H3

600-cell and 120-cell H4

24-cell F4

 d (hypercube) and � d (cross-polytope) Bd

� d (simplex) Ad=Sym(d + 1)

There are 3 regular tilings of Euclidean plane ((36), (63),
(44)=� 2 = Z2) and in�nity of (pq) on hyperbolic plane H2.
All non-polytopal regular tilings of dimension d � 3, are:
Euclidean � d = Zd, two sporadic tilings of R4 and
15; 7; 5 tilings of Hd with d = 3; 4; 5, respectively.
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l1-embedding of regular tilings

Deza-Shtogrin, 2000: all l1-embeddable (skeletons of)
d-dimensional (d � 2) regular tilings and honeycombs
are: all with d � 2, � d, � d and all 13 bipartite ones:
 d, � d and 8; 2; 1 hyperbolic tilings with d = 3; 4; 5.

So, for d � 3: all 3 series of polytopes (on Sd), the
unique series on Rd and all 11 bipartite tilings of Hd.

Four in�nite series � d,  d, � d and � d embed into Z d, Hd,
1
2Hd+1 and (with scale 2t, for t = dd

4e) H4t , respectively.

Existence of an Hadamard matrix and a �nite projective
plane have equivalents in terms of variety of those
embeddings of � d and � d, respectively.

The bipartite tilings are those with cells � m ,  m and (63);
all 11 such hyperbolic tilings embed into Z1 .
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Wythoff construction

For a (d � 1)-dimensional complex K , a �ag is a
sequence (f i ) of faces with f 0 � f 1 � � � � � f u:

The type of a �ag is the sequence dim(f i ).

Given a non-empty subset S of f 0; : : : ; d � 1g, the
Wythoff (kaleidoscope) construction is a complex P(S),
whose vertex-set is the set of �ags with �xed type S.

The other faces of K(S) are expressed in terms of �ags
of the original complex K .
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Formalism of faces of Withof�an K(S)

Set 
 = f; 6= V � f 0; : : : ; dgg and �x an S 2 
 .
For subsets U; U02 
 , we say that U0blocks U (from S)
if, for all u 2 U and v 2 S, there is an u02 U0 with
u � u0 � v or u � u0 � v. This de�nes a binary relation
on 
 (i.e., on subsets of f 0; : : : ; dg), denoted by U0 � U.

Write U0 � U, if U0 � U and U � U0, and
write U0< U if U0 � U and U 6� U0.

Clearly, � is re�exive and transitive, i.e., an
equivalence. [U] is equivalence class containing U.

Minimal elements of equivalence classes are types of
faces of K(S); vertices correspond to type S,
edges to "next closest" type S0 with S < S0, etc.
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Properties of Wythoff construction

If K is a (d � 1)-dimensional complex, then:

K(f 0g) = K and K(f d � 1g) = K � (dual complex).

In general, K(S) = K � (f d � 1 � s : s 2 Sg).

K(f 1g) is median complex and K(f 0; 1g) is (vertex)
truncated complex.

K admits at most 2d � 1 different Wythoff constructions.

K(f 0; : : : ; d � 1g) = K � (f 0; : : : ; d � 1g) is order complex.
Its skeleton is bipartite and the vertices are full �ags.
Edges are full (maximal) �ags minus some face.
In general, �ags with i faces correspond to faces of
dimension d � i .
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Archimedean polytopes

An Archimedean d-polytope is a d-polytope, whose
symmetry group acts transitively on its set of vertices
and whose facets are Archimedean (d � 1)-polytopes.

They are classi�ed in dimension 2 (reg. poygons), 3
(Kepler: 5 (regular)+ 13 + m-prisms + m-antiprisms)
and 4 (Conway and Guy).

If K is a regular polytope, then K(S) is an Archimedean
polytope.

Since K(S) = K � (f d � 1 � s : s 2 Sg), it suf�ces consider,
for any non-empty subset S of f 0; : : : ; d � 1g, only
� d(S), � d(S) and Ico(S), 24-cell(S), 600-cell(S).

A complex X embeds into Hm or 1
2Hm if its skeleton

embeds into hypercube Hm with scale 1 or 2.

– p. 23



Arch. l1-Wythof�ans with d = 2

(non-regular) l1-Wythof�an n embedding

(Cuboctahedron) � = � 3(f 0; 2g) � 14 H4

Rhombicuboctahedron= � 3(f 0; 2g) 24 J (10; 5)

tr Octahedron= � 3(f 0; 1; 2g) = � 3(f 0; 1g) 24 H6

tr Cuboctahedron= � 3(f 0; 1; 2g) 48 H9

tr Icosidodecahedron= Ico(f 0; 1; 2g) 120 H15

Rhombicosidodecahedron= Ico(f 0; 2g) 60 1
2 H16

(Icosidodecahedron)� = Ico(f 1g) � 32 H6

(tr Icosahedron)� = Ico(f 0; 1g) � 32 1
2 H10

(tr Dodecahedron)� = Ico(f 1; 2g) � 32 1
2 H26

(tr Cube)� = � 3(f 1; 2g� 14 J (12; 6)

(tr Tetrahedron)� = � 3(f 0; 1g) � 8 1
2 H7
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l1-Wythof�ans of regular d-polytopes

Conjecture : all such non-regular ones are 9 sporadic ones
(600-cell(f 0; 1; 2; 3g), 24-cell(f 0; 1; 2; 3g), Ico(f 0; 1; 2g);
Ico(f 0; 2g), Ico(f 1g)� , Ico(f 0; 1g)� , Ico(f 1; 2g)� , � 3(f 1; 2g� ,
� 3(f 0; 1g)� ) and 6 following in�nite series for d � 2.

1. � d(f kg) = J (d + 1; k + 1) for k = 1; : : : ; d � 2.

2. � d(f 0; d � 1g)� = V or(Ad) ! Hd+1 (all but 2 antipods).

3. � d(f 0; : : : ; d � 1g) = V or(A �
d) ! H(d+1

2 ) (permutahedron).

Moreover, V o(Ad) ! Z d+1 and V o(A �
d) ! Z (d+1

2 ) .

4. � d(f 0; : : : ; d � 1g) ! Hd2 (zonotope, not Voronoi).

5. � d(f 0; : : : ; d � 2g) ! Hd(d� 1) (idem, for d � 4).

6. � d(f 0; d � 1g) ! Hm with scale 2t � 2dd
4e.
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Cayley graph construction
If a group G is generated by g1,. . . ,gt , then its Cayley
graph is the graph with vertex-set G and edge-set:

(g; ggi ) for g 2 G and 1 � i � t:

G is vertex-transitive; its path-distance is length of xy � 1.

If P is a regular d-polytope, then its symmetry group is
a Coxeter group with canonical generators g0,. . . , gd� 1
and its order complex is:

P(f 0; : : : ; d � 1g) = Cayley(G; g0; : : : ; gd� 1):

Cayley(G; g0; : : : ; gn� 1) embeds into an Hm (moreover, a
zonotope) for any �nite Coxeter group G.
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All Arch. order complexes are zonotopes

K(f 0; : : : ; d-1g) = K � (f 0; : : : ; d-1g) G n embedding

� d(f 0; : : : ; d-1g) = V or(A �
d) Ad (d + 1)! H(d +1

2 )
� d(f 0; : : : ; d-1g) (not Voronoi) Bd 2dd! Hd2

Dd(f 0; 1; : : : ; d-1g) Dd 2d� 1d! Hd(d� 1)

I 2(p)( f 0; 1g) I 2(p) 2p Hp

Ico(f 0; 1; 2g) = tr Icosidodecahedron H3 120 H15

24-cell(f 0; 1; 2; 3g) F4 1152 H24

600-cell(f 0; 1; 2; 3g) H4 14400 H60

E6(f 0; 1; : : : ; 5g) E6 51840 H36

E7(f 0; 1; : : : ; 6g) E7 2903040 H63

E8(f 0; 1; : : : ; 7g) E8 696729600 H120
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IIIa. Fullerenes: IQ ,

Skyrmions and viruses

M. Deza, Fullerenes: applications and generalizations,
Preprint 2005-38, Preprint Series of Com2MaC,
Pohang University of Science and Technology, 2005.
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Fullerenes

A fullerene Fn is polyhedron (putative carbon molecule)
with n 3-valent vertices and only pentagonal and
hexagonal faces. Clearly, p5 = 12 and p6 = n

2 � 10.

Fn exist for all even n � 20 except n = 22.
1; 1; 1; 2; 5: : : ; 1812; : : : 214127713; : : : isomers Fn , for n =
20; 24; 26; 28; 30: : : ; 60; : : : ; 200; : : : .

Thurston,1998, implies: no. of Fn grows as n9.

Conjecture (Goldberg, 1933):
The polyhedron with m � 12 faces having maximal
IQ = 36� V 2

S3 is a fullerene (called “medial polyhedron”).
IQ is abbreviation for Isoperimetric Quotient.
For solids (Schwarz,1890), it holds:
IQ = 36� V 2

S3 � 1 with equality only for sphere.
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Skyrmions and fullerenes

Conjecture (Battye-Sutcliffe, 2002):
any minimal energy Skyrmion (baryonic density isosurface
for single soliton solution) with baryonic number (the
number of nucleons) B � 7 is a fullerene F4B � 8.

Conjecture (true for B < 107; open from (b; a) = (1 ; 4)):
there exist icosahedral fullerene as a minimal energy
Skyrmion for any B = 5( a2 + ab+ b2) + 2 with integers
0 � b < a, gcd(a; b) = 1 (not any icosahedral Skyrmion
has minimal energy).

Skyrme, 1962, model is a Lagrangian approximating QCD
(a gauge theory based on SU(3) group). Skyrmions are
special topological solitons used to model baryons.
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Icosahedral viruses as dualFn(I ), Fn(I h)

Hippocrates of Kos, circa 400 BC: most diseases come
from icosahedra (water) excess in body.

Caspar and Klug, Nobel prize 1982: virion capsomers
are 10T + 2 vertices of icosadeltahedron F �

20T , where
T = a2 + ab+ b2 is triangulation number, since
capsomers organized quasi-equivalently: in minimal
number T of locations with non-equivalent bonding.
But modern computers cannot evaluate capsid free
energy by all-atom simulations. Is virion minimizes free
energy and/or IQ-like functional on capsid?

For icosahedral exceptions: pseudo-equivalence and
Twarock, 2004, Janner, 2006, Chen et al., 2007.
Non-icosahedral fullerene exceptions: retroviruses HIV,
RSV and prolate shape of complex phages.
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Capsids of icosahedral viruses

(a; b) T = a2 + ab + b2 Fullerene Examples of viruses

(1; 0) 1 F �
20 (I h ) B19 parvovirus, cowpea mosaic virus

(1; 1) 3 C �
60 (I h ) picornavirus, turnip yellow mosaic virus

(2; 0) 4 C �
80 (I h ) human hepatitis B, Semliki Forest virus

(2; 1) 7l C �
140 (I ) laevo HK97, rabbit papilloma virus, � -like viruses

(1; 2) 7d C �
140 (I )dextro polyoma (human wart) virus, SV40

(3; 1) 13l C �
260 (I ) laevo rotavirus

(1; 3) 13d C �
260 (I )dextro infectious bursal disease virus

(4; 0) 16 C �
320 (I h ) herpes virus, varicella

(5; 0) 25 C �
500 (I h ) adenovirus, phage PRD1

(3; 3) 27 C �
540 (I h ) pseudomonas phage phiKZ

(6; 0) 36 C �
720 (I h ) infectious canine hepatitis virus, HTLV1

(7; 7) 147 C �
2940 (I h ) Chilo iridescent iridovirus (outer shell)

(7; 8) 169d C �
3380 (I )dextro Algal chlorella virus PBCV1 (outer shell)

(7; 10) 219 C �
4380 (I )dextro ? Algal virus PpV01
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Examples

Satellite, T = 1 , of TMV,
helical Tobacco Mosaic virus

1st discovered (Ivanovski,
1892), 1st seen (1930, EM)

Foot-and-Mouth virus,
T = 3

– p. 33



Human and simian papilloma viruses

Polyoma virus,
T = 7d

Simian virus 40,
T = 7d

They and papilloma (T=7d) violate quasi-equivalence: there
are 72 capsomers (vertices of C�

140(I )), but all are 5-mers;
so, 360subunits as for T=6. Twarock, 2004, explained them
as Penrose-like tilings of Icosahedron by rhombus and kite.
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Large icosahedral viruses

Archeal virus STIV, T = 31
Algal chlorella virus PBCV1
(4th: ' 331:000bp), T=169d

Sericesthis and Tipula iridescent viruses: (12; 1), (7; 7)?

Phytoplankton virus PpV01: T=219, largest known T .

Mimivirus (largest known virus): 1078� T � 1371; 1179?
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HIV conic fullerene; which Fn(G) it is?

Capsid core
(7; 5) Icosahedral shape (spikes): T ' 71?
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RSV fullerene cof�n

Ganser et al., 1999: HIV capsids are conic (5; 7)-fullerenes
mainly (but still not visualized at high resolution EM).
Butan et al., 2007: other retrovirus (DNA-replicating RNA),
avian Rous sarcoma, is in fullerene cof�ns (5+1, 6+0 caps).

5+1 and 6+0 caps
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IIIb. Space fullerenes
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Space fullerenes

Frank-Kasper polyhedra are all four fullerenes with isolated
hexagons: F20(I h), F24(D6d), F26(D3h), F28(Td).

FK space fullerene: a 4-valent 3-periodic comb. E3-tiling
by them; space fullerene: such tiling by any fullerenes.
They occur in soap froths (foams, liquid crystals) and:

tetrahedrally close-packed phases of metallic alloys,

clathrates (compounds with 1 component, atomic or
molecular, enclosed in framework of another) incl.
clathrate hydrates (cells are solutes, vertices are H2O,
hydrogen bonds) and zeolites (cells are H2O, vertices
are tetrahedra SiO4 or SiAlO 4, oxygen bridges).

Main cases A15, C15 correspond to: a) alloys Cr3Si, MgCu2;
b) clathrate hydrates of type I,II; c) zeolite topologies MEP,
MTN and d) clathrasils Melanophlogite, Dodecasil 3C.
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24 known primary FK space fullerenes

t.c.p. clathrate, exp. alloy sp. group f F20:F24:F26:F28 N

A15 type I, Cr3Si P m3n 13.50 1, 3, 0, 0 8

C15 type II, MgCu2 F d3m 13.(3) 2, 0, 0, 1 24

C14 type V, MgZn 2 P63=mmc 13.(3) 2, 0, 0, 1 12

Z type IV, Zr 4Al 3 P6=mmm 13.43 3, 2, 2, 0 7

� ype III, Cr46F e54 P42=mnm 13.47 5, 8, 2, 0 30

H complex Cmmm 13.47 5, 8, 2, 0 30

K complex P mmm 13.46 14, 21,6,0 82

F complex P6=mmm 13.46 9, 13, 4, 0 52

J complex P mmm 13.45 4, 5, 2, 0 22

� Mn 81:5Si8:5 Immm 13.44 37, 40, 10, 6 186

� MoNi P212121 13.43 6, 5, 2, 1 56

P Mo42Cr18Ni 40 P bnm 13.43 6, 5, 2, 1 56
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24 known primary FK space fullerenes

t.c.p. exp. alloy sp. group f F20:F24:F26:F28 N

K Mn 77F e4Si19 C2 13.42 25,19, 4, 7 220

R Mo31Co51Cr18 R3 13.40 27, 12, 6, 8 159

� W6F e7 R3m 13.38 7, 2, 2, 2 39

– K 7Cs6 P63=mmc 13.38 7, 2, 2, 2 26

p� V6(F e; Si)7 P bam 13.38 7, 2, 2, 2 26

M Nb48Ni 39Al 13 P nam 13.38 7, 2, 2, 2 52

C V2(Co; Si)3 C2=m 13.36 15, 2, 2, 6 50

I V i41Ni 36Si23 Cc 13.37 11, 2, 2, 4 228

T Mg32(Zn; Al )49 Im 3 13.36 49, 6, 6, 20 162

SM Mg32(Zn; Al )49 P m3n 13.36 49, 9, 0, 23 162

X Mn 45Co40Si15 P nmm 13.35 23, 2, 2, 10 74

– Mg4Zn7 C2=m 13.35 35, 2, 2, 16 110
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FK space fullereneA15 (� -W phase)
Gravicenters of cells F20 (atoms Si in Cr3Si) form the bcc
network A �

3. Unique with its fractional composition (1; 3; 0; 0).
Oceanic methane hydrate (with type I, i.e., A15) contains
500-2500Gt carbon; cf. � 230 for other natural gas sources.
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FK space fullereneC15

Cubic N =24; gravicenters of cells F28 (atoms Mg in MgCu2)
form diamond network (centered A3). Cf. MgZn2 forming
hexagonal N =12 variant C14 of diamond: lonsdaleite found
in meteorites, 2nd in a continuum of (2; 0; 0; 1)-structures.
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FK space fullereneZ

Z is also not unique with its fraction (3; 2; 2; 0).
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Computer enumeration
Dutour-Deza-Delgado, 2008, found 84 FK structures (incl.
known: 10 and 3 stackings) with N � 20 fullerenes in
reduced (i.e. by a Biberbach group) fundamental domain.

# 20 # 24 # 26 # 28 fraction N(nr.of) n(known structure)

4 5 2 0 known 11(1) not J -complex

8 0 0 4 known 12(1) 24(C36 )

7 2 2 2 known 13(5) 26(� ), 26(p� ), 39(� ), not M

6 6 0 2 new 14(3) -

6 5 2 1 known 14(6) 56(� ), not P

6 4 4 0 known 14(4) 7(Z)

7 4 2 2 conterexp. 15(1) -

5 8 2 0 known 15(2) 30(� ), 30(H -complex)

9 2 2 3 new 16(1) -

6 6 4 0 conterexp. 16(1) -

4 12 0 0 known 16(1) 8(A 15 )

12 0 0 6 known 18(4) 12(C14 ),24(C15 ),36(6-layer), 54(9-layer)
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Conterexamples to2 old conjectures
Any 4-vector, say, (x20; x24; x26; x28), is a linear combination
a0(1; 0; 0; 0)+a1(1; 3; 0; 0)A15+a2(3; 2; 2; 0) Z+a3(2; 0; 0; 1)C15

with a0 = x20- x24
3 -7x26

6 -2x28 and a1= x24 � x26
3 , a2=x26

2 , a3=x28.
Yarmolyuk-Krypyakevich, 1974: a0 = 0 for FK fractions.
So, 5:1� q � 5:(1), 13:(3)� f � 13:5; equalities iff C15, A15

Conterexamples: (7; 4; 2; 2), (6; 6; 4; 0), (6; 8; 4; 0) (below).
Mean face-sizes q: � 5:1089, 5:(1)(A15), � 5:1148. Mean
numbers of faces per cell f : 13:4(6), 13:5(A15), 13:(5)
disproving Nelson-Spaepen, 1989: q � 5:(1), f � 13:5.
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Frank-Kasper polyhedra and A15

24 known FK structures have mean number f of faces per
cell (mean coordination number) in [13:(3)(C15); 13:5(A15)]
and their mean face-size is within [5 + 1

10(C15); 5 + 1
9(A15)].

Closer to impossible 5 or f = 12 (120-cell, S3-tiling by F20)
means lower energy. Minimal f for simple (3, 4 tiles at each
edge, vertex) E3-tiling by a simple polyhedron is 14 (tr.oct).
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Non-FK space fullerene: is it unique?
Deza-Shtogrin, 1999: unique known non-FK space
fullerene, 4-valent 3-periodic tiling of E3 by F20, F24
and its elongation F36(D6h) in ratio 7 : 2 : 1;
so, new record: mean face-size � 5:091<5:1 (C15) and
f =13.2<13.29 (Rivier-Aste, 1996, conj. min.) <13.(3) (C15).

Delgado, O'Keeffe: all space fullerenes with � 7 orbits of
vertices are 4 FK (A15, C15, Z , C14) and this one (3,3,5,7,7).
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Weak Kelvin problem
Partition E3 into equal volume cells D of minimal surface
area, i.e., with maximal IQ (D) = 36�V 2

A3 (lowest energy
foam). Kelvin conjecture (about congruent cells) is still out.

Lord Kelvin, 1887: bcc=A �
3

IQ(curved tr.Oct.) � 0:757
IQ(tr.Oct.)

� 0:753

Weaire-Phelan, 1994: A15
IQ(unit cell) � 0:764

2 curved F20 and 6 F24

In E2, the best is (Ferguson-Hales) graphite F1 = (6 3).
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IVa. Zigzags and railroads

in fullerenes

M. Deza, M. Dutour and P.W. Fowler,
Zigzags, Railroads, and Knots in Fullerenes, J. Chemical
Information and Computer Science, 44 (2004) 1282–1293.
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Zigzags

A plane graph G
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Zigzags

take two edges
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Zigzags

Continue it left-right alternatively ....
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Zigzags

... until we come back.
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Zigzags

A self-intersecting zigzag
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Zigzags

A double covering of 18 edges: 10+10+16

z=10 ,  162z-vector 2,0
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z-knotted fullerenes

A zigzag in a 3-valent plane graph G is a circuit such
that any 2, but not 3 edges belong to the same face.

Zigzags can self-intersect in the same or opposite
direction.

Zigzags doubly cover edge-set of G.

A graph is z-knotted if there is unique zigzag.

What is proportion of z-knotted fullerenes among all Fn?
Schaeffer and Zinn-Justin, 2004, implies: for any m,
the proportion, among 3-valent n-vertex plane graphs
of those having � m zigzags goes to 0 with n ! 1 .

Conjecture : all z-knotted fullerenes are chiral and their
symmetries are all possible (among 28 groups for them)
pure rotation groups: C1, C2, C3, D3, D5.
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Railroads

A railroad in a 3-valent plane graph is a circuit of hexagonal
faces, such that any of them is adjacent to its neighbors on
opposite faces. Any railroad is bordered by two zigzags.

414(D3h) 442(C2v)
Railroads (as zigzags) can self-intersect (doubly or triply).
A 3-valent plane graph is tight if it has no railroad.
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First IPR fullerene with self-int. railroad

F96(D6d); realizes projection of Conway knot (4 � 6)�
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Fullerene with triply intersecting railroad

Conjecture : above F176(C3v) is smallest such fullerene
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Some special fullerenes

30, D5h
all 6-gons
in railroad
(unique)

36,D6h 38, C3v
all 5-, 6-
in rings
(unique)

48, D6d
all 5-gons
in alt. ring
(unique)

2nd one is the case t = 1 of in�nite series F24+12t (D6d;h),
which are only ones with 5-gons organized in two 6-rings.

It, F20 and F24 form the only known non-FK space fullerene

The skeleton of its dual is an isometric subgraph of 1
2H8.
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Tight fullerenes

Tight fullerene is one without railroads, i.e., pairs of
”parallel” zigzags.

Clearly, any z-knotted fullerene (unique zigzag) is tight.

F140(I ) is tight with z = 2815 (15 simple zigzags).
Conjecture : any tight fullerene has � 15 zigzags.

Conjecture : all tight fullerenes with simple zigzags are 9
known ones (holds for all Fn with n � 200).
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Tight Fn with only simple zigzags

n group z-vector orbit lengths int. vector

20 I h 106 6 25

28 Td 127 3,4 26

48 D3 169 3,3,3 28

60, IPR I h 1810 10 29

60 D3 1810 1,3,6 29

76 D2d 224; 207 1,2,4,4 4; 29 and 210

88, IPR T 2212 12 211

92 Th 226; 246 6,6 211 and 210; 4

140, IPR I 2815 15 214

Conjecture : this list is complete (checked for n � 200).
It gives 7 Grünbaum arrangements of plane curves.
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Tight Fn with simple zigzags

20 I h, 206 28 Td, 127 48 D3, 169

60 D3, 1810 60 I h, 1810 76 D2d, 224; 207
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Tight Fn with simple zigzags

88 T , 2212 92 Th, 246; 226

140 I , 2815
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IVb. Zigzags and

Lins triality of maps
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Zigzags on2-complexes (surface maps)

Klein map: z = 821 Dyck map: z = 616

A zigzag, being a local notion, is de�ned on any surface,
even on a non-orientable one.

Zigzags are also called left-right paths (Shank) or
Petrie paths, from Petrie polygons of polytopes (Coxeter).

A map and its dual have the same zigzag vector z.

In an in�nite graph, zigzags are circuits or in�nite paths.
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Zigzags of regular maps

A �ag-transitive map is called regular.
Zigzags of regular maps are simple (not self-intersecting).

map n rot. group z z(GCk;l )=(k2 + kl + l2)
Dod. f 53g 20 PSL(2; 5) 106 106 or 610 or 415

Klein� f 73g 56 PSL(2; 7) 821 821 or 628

Dyck� f 83g 32 (1) 616 616 or 812

f 113g 220 PSL(2; 11) 1066 1066 or 6110 or 1255

(1) is a solvable group of order 96 generated by two
elements R, S subject to R3 = S8 = ( RS)2 = ( S2R� 1)3 = 1 .
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Lins trialities

(v; f ; z) ! notation in [3] notation in [1] notation in [2]
(v; f ; z) M Graph-Ecoded Map M
(f ; v; z) M � dual gem M �

(z; f ; v) phial (M ) phial gem (s(M � )) �

(f ; z; v) (phial (M )) � skew-dual gem s(M � )
(v; z; f ) skew(M ) skew gem s(M )
(z; v; f ) (skew(M )) � skew-phial gem (s(M )) �

Jones-Thornton, 1987: those are only “good” dualities.
1. S. Lins, Graph-Encoded Maps, J. Comb. Th. B-32, 1982.
2. K. Anderson and D.B. Surowski, Coxeter-Petrie
Complexes of Regular Maps, Europ. J. of Comb. 23-8, 2002.
3. M. Deza and M. Dutour, Zigzag Structure of Complexes,
SEAMS Math. Bull. 29-2, 2005; arXiv:math.CO/0405279.
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Graph-Encoded Maps

Given a set X and �xed-point-free involutions A; B; C on X
with AB = BA and hA; B; C i transitive on X , the quadruple
(X ; A; B; C ) de�nes a GEM (combinatorial map) M with
sets V(M ); E(M ); F (M ), Z(M ) of vertices, edges, faces,
zigzags being orbit-sets of (acting on X ) groups hA; Ci ,
hA; B i , hC; Bi , hC; AB i , respectively.

For a map M =(X ; A; B; C ), [hA; B; C i : hCA; CB i ] � 2: M is
orientable if this rank is 2 (orienting monodromy group).

Operations dual, skew, phial are re�exions.
Usual dual(M ) interchanges roles of A and B ; so, vertices
and faces leaving edges, zigzags. Petrie dual (skew(M ))
interchanges B and AB ; so, faces/zigzags leaving vertices.

The group hdual; skewi of trialities is ' S3 ' Sym3.

– p. 65



Example: Tetrahedron

phial (Tetrahedron) skew(Tetrahedron)
Two Lins maps on projective plane.

Two above maps are folded (i.e. obtained by identifying
opposite vertices) Octahedron and Cube.

skew(Cube) and phial (Octahedron) are toric maps.
phial (Cube) and skew(Octahedron) are maps on a
non-oriented surface of genus 4, i.e., with � = � 2.
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Bipartite skeleton case

4

1

6

8 7

5

2

3

3 6

3

8 7

5 6 4

1 2

3 5

4

8 7

6

Two representation of skew(Cube): on Torus and as a Cube
with cyclic orientation of vertices (marked by ) reversed.

For bipartite graph embedded in oriented surface, the skew operation is,
in fact, reversing orientation of one of the part of the bipartition.

Nedela-Skoviera-Zlatos, 2001: skew(M ) (Petrie dual) of
orientable map M is orientable if and only if M is bipartite.

� (skew(M ))=v-e+Z ; � (phial (M ))= � ((skew(M � )) � )=f -e+Z ,
where � denotes the Euler characteristic and e, Z are the
numbers of edges and zigzags of M .
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Zigzags ond-dimensional complexes

A (maximal) �ag u = ( f 0; : : : ; f d� 1) is a sequence of
i -dimensional faces f i with f i � f i +1 .

Given a �ag u, there exist an unique �ag � i (u), which differs
from u only in position i , i.e., in f 0

i 6= f i , f i � 1 2 f i ; f 0
i 2 f i +1 .

A zigzag z is a circuit of �ags (uj )0� j � l , such that u0 = u,
uj = � n : : : � 1(uj � 1); so, u1 = ( f 0

0; : : : ; f 0
n� 1).

The number of �ags is called its length (it is even for odd d).

Zigzags partition the �ag-set of the complex.
z-vector is a vector, listing zigzags with their lengths.

A complex is polytopal if it is the face-lattice of a polytope.

Problem : generalize Lins triality of maps on d-complexes.
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Zigzags of regular/semiregular polytopes

d d-polytope z-vector

3 Dodecahedron 106

4 24-cell 1248

4 600-cell 30240

d d-simplex=� d (n + 1) n !=2

d d-cross-polytope=� d (2n)2n � 2 (n � 1)!

4 octicosahedric 4-polytope 45480

4 snub 24-cell 20144

4 021=Med(� 4) 1512

5 121=Half-5-Cube 12240

6 221=Schlä�i polytope (in E6) 184320

7 321=Gosset polytope (in E7) 9048384

8 421 (240roots of E8) 3629030400
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Va. Three classes of

exotic plane graphs
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Self-dual sphericf 44g's

A self-dual spheric f 44g (almost f 44g on S2)
is a self-dual polyhedron with 3-, 4-valent vertices
and 3-, 4-gonal faces only.
Clearly, v3 = p3 = 4 (but v3 = p3 = 0 for such torus)

Their medial (convex hull of midpoints of edges) are
4-valent polyhedra with 3-, 4-gonal faces. Clearly, p3 = 4 .

Example : k-elongated square pyramid, k � 1. The
medial of square pyramid (k = 1 ) is square antiprism.

Problem : Characterize self-dual spheric f 44g's or, at
least, their symmetries, growth as vn , parametrization.

The gyrobifastigum (one of 92 regular-faced polyhedra)
also has p=(p3; p4)=v=(v3; v4)=(4; 4) but it is not self-dual.
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Spheric f 36g's
A spheric f 36g (almost f 36g on S2) is a 6-valent plane
graph with 2-, 3-gonal faces only. So, p2=6, v=2 + p3

2 .

Such sphere exists for any v � 2 vertices, starting with
Bundle6 (2 vertices connected by 6 edges).

Central circuit in an Eulerian (i.e., even-valent) plane
graph is a circuit going only straight ahead.

Example : by consequtive, t � 1 times, inscribing of
Bundle4 into Bundle6, comes 2t-vertex spheric f 36g with
CC-vector (2t ; (2t)2), if t is odd, and (2t ; 4t), otherwise.

4, D2d, (22; 8) 4, D2, (12) 8, D6h, (43; 62)
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Three series of sphericf 36g's
Sti : (3t + i � 1)-vertex spheric f 36g with CC=(3t ; (2t + i � 1)3),
if t + i � 2(mod3), and CC=(3t ; 3(2t + i � 1)), otherwise.

Incomplete cap A cap B
i = 1; 2; 3 if caps AA, AB, BB; �rst 2 members of 3 series:

3, D3h, S11 4, Td, S12 5, D3h, S13

6, D3d, S21 7, C3� , S22 8, D3d, S23

– p. 73



Problems for sphericf 36g's

Estimate, as vn , the number of v-vertex spheric f 36g's
and list their possible symmetries.

Find all of them without self-intersecting central circuits.

Is the number of c. circuits of length � 4 bounded?

Extend, if possible, Goldberg-Coxeter construction for
those 6-valent spheres.
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Small t-knots
(Projection of) t-knot is a �nite plane 2(t + 1) -valent graph
(no loops but 2-gons permitted) with unique central circuit.
So, 0-knot is a polygon; smallest 0-knot is 2-gon.
1-knot is a knot; smallest 1-knot is trefoil 31.

Smallest t-knot if t > 1, is t-�gure-of-eight : 41 if t = 1 , and if
t > 1, it comes from (t � 1)-�gure by adding 4-ring of 2-gons.

Problem : tabulate small t-knots for any t � 2.
So, program enumerating 2t-valent plane graphs is needed.

V.I. Arnold, Topology of Plane Curves, Wave Fronts,
Legendrian Knots, Sturm Theory and Flattenings of
Projective Curves, Int. Math. Union Bulletin, 39, 1995.
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Vb. Ambiguous

polycycle boundaries

M. Deza, M. Dutour and M. Shtogrin,
Filling of a given boundary by p-gons and related problems,
Discrete Applied Mathematics 56 (2008) 1518-1535.
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Polycycles

A (p;3)-polycycle is a plane 2-connected �nite graph with:

all interior faces are (combinatorial) p-gons,

all interior vertices are of degree 3,

all boundary vertices are of degree 2 or 3.

In more general (p; q)-polycycle, interior vertices have
degree q and boundary ones are of degree 2; : : : ; q.
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Boundary sequence of(p;3)-polycycle

The boundary sequence is the sequence of degrees
(2 or 3) of the vertices of the boundary.

Associated sequence is
3323223233232223

The boundary sequence is de�ned only up to action
of Dn , i.e., the dihedral group of order 2n generated
by cyclic shift and re�exion.

The invariant given by the boundary sequence is the
smallest (by the lexicographic order) representative of
the all possible boundary sequences.
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The �lling problem

Does there exist (p;3)-polycycles with given boundary
sequence?

If yes, is this (p;3)-polycycle unique?

The cases p = 3 or 4 are trivial:
all (3; 3)-polycycles: Tetrahedron = � 3, � 3 � e; � 3 � v.
all (4; 3)-polycycles: Cube =  3,  3 � e,  3 � v and
the serie P2 � Pn , n � 2.

Let p = 5 ; consider, for example, the sequence 2323232323
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The �lling problem

Does there exist (p;3)-polycycles with given boundary
sequence?

If yes, is this (p;3)-polycycle unique?

The cases p = 3 or 4 are trivial:
all (3; 3)-polycycles: Tetrahedron = � 3, � 3 � e; � 3 � v.
all (4; 3)-polycycles: Cube =  3,  3 � e,  3 � v and
the serie P2 � Pn , n � 2.

Let p = 5 ; consider, for example, the sequence 2323232323
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What boundary says about its �lling(s?)

The boundary of a (p;3)-polycycle de�nes it if p = 3; 4.

A (6; 3)-polycyle is of lattice type if its skeleton is a
partial subgraph of the skeleton of the partition f 63g
of the plane into hexagons. Such (6; 3)-polycycles
are uniquely de�ned by their boundary sequence.

From Euler formula, the boundary sequence of any
(p;3)-polycycle, de�nes its number f p of p-gons:

If p 6= 6 , then f p = v2 � v3+5
p� 6 and vint = 2(v2 � p)� (p� 4)v3

p� 6 .
If p = 6 , then f 6 is also de�ned uniquely and v2 = 6 + v3.
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2 equi-boundary (5; 3)-polycycles

Boundary sequence: 12, 26 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: C2v, of polycycles: C2.

Fillings: 20 pentagons, 12 interior vertices.
It is unique ambiguous boundary with f 5 � 20 = 4 � 5.
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2 equi-boundary (6; 3)-polycycles

Boundary sequence: 40, 34 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: C2v, of polycycles: C2.

Fillings: 24 hexagons, 12 interior vertices.
It is unique ambiguous boundary with f 6 � 24 = 4 � 6.
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Ambiguous boundary for any p � 6

Boundary sequence is:
b = u2p� 1u3p� 6u2p� 1u3p� 6,
where u = (23p� 4)p� 12.
6p� 2 vertices of degree 3
and 4p2� 18p+4 of degree 2.

Symmetry groups are:
of boundary: C2v,
of polycycles: C2.

Deza, Shtogrin and Dutour, 2005: it has two different (but
isomorphic as maps) (p;3)-�llings ( f p = 4p, vint = 2p).
Conjecture : any (p;3)-polycycle with � 4p p-gons is uniquely
de�ned by its boundary. It holds for p = 6 (Guo, Hansen and
Zheng, 2002) and p = 5 (Deza and Shtogrin, 2006).

– p. 83



Many equi-boundary (p;3)-�llings

8 (6; 3)-�llings come by two �llings of those 3 components;
same aggregating gives arbitrarly large number for p � 6.
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More ambiguity

Boundaries, admitting two non-isomorphic (p;3)-�llings,
can be obtained by adding 1 p-gon to general example.

There exist boundary admitting exactly N (p;3)-�llings
for any given number N .
Example : boundary 2235n+1 2235n+3 2235n+1 2235n+3 has
exactly n + 1 (5; 3)-�llings ( f 5 = 20n + 6 , vint = 20n + 2 ).

Ambiguous boundaries exist for (p;q)-polycycles, i.e.,
with max. degree q and exactly q for int. vertices.

Does Ramsey's type results hold for large f p or vint ?
For example, is any (p; q)-polycycle is a partial subgraph
of a (p; q)-�lling with the boundary having given "degree
of ambiguity"?
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Equi-boundary (3; 5)-�llings

Two non-isomorphic (3; 5)-�llings of the same boundary
(34345)252(34345)252 (by 34 triangles and 30 int. vertices).
Their symmetry is C2, as of the boundary. This boundary

might be minimal for the number f 3 of triangles and/or vint .
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VI. Extreme

physical distances

Chapter 27 of E. Deza and M. Deza,
Dictionary of Distances, Elsevier, 2006,
and Encyclopoedia of Distances, Springer, 2009.
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The range of physical distances

The distances having physical meaning range from

1:616� 10� 35 m (Planck length lP =
q

~G
c3 ) to

7:4 � 1026 m (Hubble distance DH , the estimated size
of observable Universe) � 46� 1060 Planck lengths.
So,

p
lP DH is about 0.1 mm, size of a bacterium.

Quantum Theory, Relativity Theory and Newton laws
describe physical systems within 10� 15 � 1025 m.

10� 15 =1 fermi: strong force, proton/neutron radius.

Gigantic accelerators can register particles 10� 19 m.
10� 18 =1 attometer: weak force range, quark/electron.

Below till lP � 10� 35: 17 Dark Magnitudes of unknown
(102-1019 GeV in energy terms).
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Lower limit

10� 34 m: length of a putative string in M-theory (that all
forces and elementary particles come by their vibration).

Space is smooth till � 10� 14, roughness starts at � 10� 32.
At � lP � 1:6 � 10� 35: quantum foam: violent warping and
turbulence of spacetime; it is not described by cartesian
coordinates, position measurements fail to commute.
The dominant structures: multiply-connected wormholes
and bubbles popping into existence and back out of it.

Uncertainity principle with x; px being position, momentum
along x-axis: 4 x4 (px) � ~ = 1:054� 10� 27 erg-sec.

Quantum Mechanics, General Relativity and all Theories of
Everything (unify gravity, electroweak and strong nuclear
forces) indicate the existence of minimal length, where the
very notion of ”distance” looses operational meaning.
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Gravitation on extreme distances
The gravitation is untested for extreme distances.

Newton law was tested till 56 microns (5:6 � 10� 5 m);
so, no extra dimension of � 44 microns. It will be tested
further at LHC (Large Hadron Collider, CERN).
LHC and ILC (late 2010s) will measure the number, size
and shape of TeV-scale (� 10� 18 m) extra dimensions.

The existence of 2 extra dimensions of > 8 microns
(or 4 of > 10� 12) will be tested via proportionality of the
gravitational attraction in n-dimensional space to d1� n .

So, if Universe have (compacti�ed "large")
4-th dimension, LHC will detect inverse proportionality
to the cube of small inter-particle distance.

General Relativity, more accurate than Newton law,
is untested on galactic and cosmological scales.
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Approaching to upper limit

1024 m = 1 yottameter = 104:7 MLY = 32:4 megaparsec:
largest metric length unit.
200MLY: width of the Great Wall and Lyman alpha blobs,
largest observed superstructures in the Universe.

2:36� 1024 m= 250 MLY: distance to the Great Attractor,
a gravitational anomaly where our galaxy is going.

9:46� 1024 m= 1 hubble =1 light-Gyr: largest distance unit.
Redshift z � 1 (� 8 light-Gyr): cosmological distances.
z = 6:43 =12080MLY: distance to farthest known quasar.
z � 6:5: the Wall of Invisibility for visible light.
z � 20 � BB+400 MY: �rst stars formation (end of Dark Age)

1:3 � 1026 m = 13:7 light-Gyr = 4:22 gigaparsec (z � 1089):
Hubble radius (the cosmic light horizon, age of Universe),
cosmic background radiation journey since the Big Bang.
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The Cosmic Web
On typical scale about 10-100Mpc, the structure of
Universe is foamlike: near empty voids separated by
sheetlike walls (�laments of galaxies), denser edges
and esp. dense nodes (clusters of galaxies).

Origin: gravitational growth of tiny initial density/velocity
deviations. COBE/WMAP telescopes observed < a
factor 10� 5 disturbances in 379:000years old Universe.

Voids are expanding (from their centers - minima of
Gaussian density �uctuation �eld). They becoming
more round and of about same size 30-50 Mpc. They
merge or destroyed by larger collapsing overdensity.

In a void, mean inter-galactic distance increase. Galaxy
reach a wall, move on it to an edge, then into node.

Voronoi tiling is asymptotic ultime matter distribution?
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Upper limit

4:3 � 1026 m: the present (comoving: (1 + z)d) distance
to the edge of the observable Universe;
the size of observable Universe is larger than Hubble
radius, since Universe is expanding.

This number being of the order of the gravitational
radius for observable Universe mass (� 1060 kg), some
physicists see Univers as a huge rotating black hole.

If (the topology of) Universe is non-simply connected,
then it is compact (�nite in extent) and estimated
maximum length scale is only 5 - 15%of Hubble radius.

On the other hand, the hypothesis of parallel universes
estimates that one can �nd another identical copy of our
Universe within the distance 1010118

m.
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Time limits

In terms of time, Planck time tP =
q

~G
c5 � 5:39� 10� 44 s

is the smallest observable unit of time and the time
before which science cannot describe the Universe.

The present time from the Big Bang is about 13:7 billion
years � 4 � 1017 sec. Cf. 155 trillion years (Hinduism).
If protons decay, their half-life is at least 1035 years.

Universe, in the Heat Death scenario, achieves beyond
101000 years so low-energy state, that quantum events
became major phenomena and space-time loose usual
meaning again, as below the Planck time or length.
But now Universe generates (by nuclear fusion in star
cores) 5PW=5 � 1015W yearly average power per cubic
light-year (� 300 times humanity's consumption in 2007).
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