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Extremal and Nonextendible PolycyclesM. Deza1 and M. I. Shtogrin2Received May 2002Abstract|We continue the analysis of (r; q)-polycycles, i.e., planar graphs G that admita realization on the plane such that all internal vertices have degree q, all boundary vertices havedegree at most q, and all internal faces are combinatorial r-triangles; moreover, the vertices,edges, and internal faces form a cell complex. Two extremal problems related to chemistryare solved: the description of (r; q)-polycycles with the maximal number of internal verticesfor a given number of faces, and the description of nonextendible (r; q)-polycycles. Numerousexamples of isohedral polycycles (whose symmetry groups are transitive on faces) are presented.The main proofs involve an abstract cell complex P(G) obtained from a planar realization ofthe graph G by replacing all its internal faces by regular Euclidean r-gons.INTRODUCTIONConsider a planar3 graph G. This graph can be embedded in the plane so that no two of itsedges intersect. This embedding (a planar realization of the graph G) is a so-called 
at graph.Upon adding to the 
at graph all its faces, we obtain a 
at map. All bounded faces of a 
at mapare internal faces of a 
at graph. The vertices that do not belong to the unbounded face of a 
atmap are called internal vertices of a 
at graph.De�nition. Suppose that a planar realization of a nonseparable planar graph G with girth rand the maximal degree of vertices q satis�es the following three conditions:(i) All internal faces are combinatorial r-gons with r � 3.(ii) All internal vertices have the same degree q � 3.(iii) The vertices, edges, and internal faces form a cell complex.Then, the graph G supplemented with internal faces (taken from the given planar realization ofthe graph G) is called an (r; q)-polycycle and denoted by �(G)If at least one planar realization of the planar graph G satis�es conditions (i){(iii), where ris the girth of the graph and q is the maximal degree of vertices, we will say that the graph Gadmits an (r; q)-polycyclic realization. If G admits an (r; q)-polycyclic realization, then it admitsexactly one such realization in the general case (see [3{6]). Only in �ve exceptional cases when thegraph represents the edge skeleton of a Platonic body, the number of (r; q)-polycyclic realizationsof G is equal to the number of faces of the Platonic body; in any of these �ve cases, the polycyclicrealizations are isomorphic. We classify the result obtained [3{6] as a speci�c uniqueness theorem fora polycyclic realization. A graph G admitting an (r; q)-polycyclic realization, the (r; q)-polycyclic1CNRS/ENS, Paris, France; Institute of Statistical Mathematics, Tokyo, Japan.E-mail: Michel.Deza@ens.fr2Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 117966 Russia.E-mail: stogrin@mi.ras.ru3The terminology related to the graph theory is borrowed from Harary's book [14].117



118 DEZA, SHTOGRINrealization of the graph G, and the (r; q)-polycycle �(G) are three di�erent concepts that areuniquely de�ned by each other (see above). Sometimes, we will use a common short term polycyclefor any of these three concepts (when it is clear from the context of which concept we speak).We have proved that, for any nonseparable 
at graph, condition (iii) follows from conditions (i)and (ii). Condition (ii) implies that the degree of any internal vertex of the polycycle�(G) is equalto the maximal degree of vertices of G. Naturally, the degree of any boundary vertex of �(G) doesnot exceed the maximal degree q; it is equal to a certain number j, where 2 � j � q. The setof internal vertices of the polycycle �(G) may be empty (when the 
at graph G is outerplanar).A separate r-gon is a special (r; q)-polycycle with parameter q = 2. As any other outerplanargraph, it can be considered as an (r; q)-polycycle with any other (greater) numerical value of theparameter q (which is useful for the classi�cation of subpolycycles,4 see Table 5 below).It should be noted that the concept of (r; q)-polycycle �(G) is introduced not only for a �nitegraph G but also for an in�nite graph. In the case of an in�nite 
at graph, we always assume thatthere are only a �nite number of vertices and edges of this graph in any �nite domain of the plane.In the case of an in�nite graph G, any (r; q)-polycycle �(G) represents an in�nite simply connecteddomain, generally speaking, with boundary (see below and [4, 6]); in the case of a �nite graph G,any (r; q)-polycycle �(G) is a disk, which is always with boundary.An (r; q)-polycycle is called proper if it is a partial subgraph of the edge skeleton of a regulartiling (rq) (i.e., a tiling of the sphere S2, Euclidean plane R2 , or Lobachevskii plane H 2 by regularr-gons with angles 2�q , so that the degree of each tiling vertex is equal to q), and a helicene otherwise.In a full agreement with the sign of the curvature of a \plane," the parameters (r; q) are calledelliptic if rq < 2(r + q), parabolic if rq = 2(r + q), and hyperbolic if rq > 2(r + q). If the (r; q)-polycycle �(G) is not outerplanar, then these terms also correlate with the sign of the curvature ofan internal vertex of the polyhedronK(rq) that is obtained from a regular tiling (rq) upon replacingeach r-gon by a regular Euclidean r-gon. Only (r; q)-polycycles�(rq) with parabolic and hyperbolicparameters (r; q) do not have a boundary: they are isomorphic to the regular tilings (rq). In thecase of elliptic parameters (r; q), even the (r; q)-polycycle �(rq) has a boundary: the interior ofone face F is removed from the surface of a Platonic body (because a sphere cannot be completelyembedded into a plane).There is extensive literature (see, for example, [8, x 9.4; 9]) on proper (r; q)-polycycles withparabolic parameters (r; q) = (4; 4); (3; 6), and (6; 3); they are called polyominoes, polyamonds,and polyhexes, respectively. For instance, the �rst and the last types of polycycles are consideredin physics and organic chemistry. All 39 proper (5; 3)-polycycles were obtained independently bychemists in [10]. However, all proper polycycles for elliptic parameters (r; q) were obtained as earlyas in [12]; any proper (r; q)-polycycle for these parameters has a unique dual (r; q)-polycycle (theone that has a common boundary with the former polycycle on the occupied sphere S2).General problems for arbitrary (r; q)-polycycles were considered in [1{7]. In particular, in [5, 6],a criterion was obtained for a �nite graph to be a polycycle.5 In [3, 5, 6], it was shown that anypolycycle �(G) is cellularly mapped into a regular tiling (rq); moreover, this mapping6 is uniquelyde�ned by a 
ag (i.e., incident vertex, edge, and r-gon) and its image (projection) under thismapping. We should emphasize three important moments associated with the derivation of thisresult:First, in the neighborhood of its internal points, the (r; q)-polycycle�(G) has the same structureas the tiling (rq).4A polycycle P 0 that is a partial subgraph of a polycycle P 00 is called a subpolycycle of the polycycle P 00, whilethe polycycle P 00 is called a superpolycycle relative to P 0 (here, we use short notation; see footnote 7).5V.P. Grishukhin pointed out that the requirement of planarity in the formulation of the criterion is redundant.6This mapping is always locally topological but not always globally topological; M.A. Shtan'ko pointed out thatthe term homomorphism does not apply to this case.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



EXTREMAL AND NONEXTENDIBLE POLYCYCLES 119Second, the (r; q)-polycycle �(G) is simply connected.Third, the regular tiling (rq) has no boundary.EXTREMAL POLYCYCLESLet us �x arbitrary natural numbers r � 3 and q � 3. For an (r; q)-polycycle7 P , denote by pr(P )the number of its faces8 and by nint(P ) the number of internal vertices. We call the number nint(P )pr(P )the density of the (r; q)-polycycle P . Let us introduce one more notation: n(x) = maxnint(P ) forpr(P ) = x. An (r; q)-polycycle P is called extremal if nint(P ) = n(pr(P )), i.e., if the polycycle Phas the maximum number of internal vertices nint for a given number of faces pr. In [10], all valuesof n(x) were obtained for (5; 3)-polycycles for x � 11; all extremal (5; 3)-polycycles proved to beunique and proper, and any dual of an extremal (r; q)-polycycle proved to be extremal again. Inaddition, a problem was posed in [10] on �nding the function n(x) for x � 12 for (5; 3)-polycycles.An exhaustive answer to this problem is given by our Theorem 1.The cell complex consisting of all vertices, edges, and faces of an (r; q)-polycycle that are notincident with its boundary is called the core of this polycycle. A polycycle with nonempty connectedcore is called a nontrivial elementary polycycle if all its faces are incident with its core; no face canbe removed from this polycycle without reducing the core. A separate r-gon is a trivial elementarypolycycle with empty core.Lemma 1. Any (r; q)-polycycle with elliptic parameters (r; q) is uniquely represented asa union of elementary summands, i.e., trivial and (maximal) nontrivial elementary subpolycyclesthat do not have pairwise common faces.Proof. Consider any two vertices of an r-gon of an elliptic (r; q)-polycycle that belong to thecore of this polycycle. The shortest edge path9 between these vertices lies inside the union of twostars of r-gons with the centers at these two vertices; this result can easily be veri�ed in eachparticular case for any elliptic parameters (r; q) = (3; 3); (3; 4); (3; 5); (4; 3), and (5; 3). Hence, anyr-gon of an elliptic (r; q)-polycycle is only incident with one simply connected component of its core.All r-gons that are incident with the same nonempty connected component of the core constitutea nontrivial elementary summand. If nontrivial elementary summands do not exhaust all r-gons ofan elliptic (r; q)-polycycle, then any of the remaining r-gons is not incident with the core; hence,any of them is a trivial elementary summand (with empty core). It is clear that the decompositionobtained of the elliptic polycycle into elementary summands is unique.10 Lemma 1 is proved.Note. For an arbitrary polycycle with elliptic parameters, all boundary vertices of any elemen-tary summand are boundary vertices of the enveloping polycycle. Hence, any elementary summandin the enveloping elliptic polycycle is isometric (in the sense of a graphical metric).Remark 1. Even for (r; q) = (6; 3), a proposition similar to Lemma 1 is not valid. Indeed,take two vertices in the tiling (63) that are diametrically opposite vertices of the same hexagon.Three hexagons of the tiling (63) surrounding the same vertex constitute one elementary poly-cycle, and three hexagons surrounding another vertex constitute another polycycle. These twoelementary (6; 3)-polycycles, which have a common hexagon, constitute together an enveloping(6; 3)-polycycle11 with p6 = 5, whose core is not connected (it consists of two vertices).7For short, everywhere below, we denote an (r; q)-polycycle �(G) by P .8Actually, we include only internal faces of the (r; q)-polycyclic realization of the graph G in the polycycle �(G)and call them the faces of the polycycle �(G) in what follows.9By the way, this path passes along the edges of the r-gon (see [3; 4; 6, corollary to the lemma]).10Elementary subpolycycles whose cores are parts of the same connected component of the core of a superpolycyclemay have common faces; on the contrary, elementary summands do not have pairwise common faces (here, weonly speak of elliptic (r; q)-polycycles.11Both (6; 3)-polycycles in this enveloping polycycle are maximal elementary subpolycycles.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



120 DEZA, SHTOGRINTheorem 1. Let (r; q) = (5; 3). Then,(i) n(x) = 8>><>>:x if x � 0; 8; 9 (mod 10);xy 1 if x � 6; 7 (mod 10);xy 2 if x � 1; 2; 3; 4; 5 (mod 10);except for the following three cases: n(9) = 10; n(10) = 12; and n(11) = 15. The extremal polycycleis unique for x � 11 (however, this is no longer so for x = 12) and when n(x) = x;(ii) all possible densities of (5; 3)-polycycles, except for the three cases p5 = 9; 10; 11; form thesegment [0; 1]. All rational densities can be realized by �nite improper polycycles. All possibledensities of polycycles any of whose faces contains an internal vertex form the segment [13 ; 1].Proof. The proof of Theorem 1 is based on Lemma 1, the list of all connected componentsof the cores of (5; 3)-polycycles, and the corresponding list of elementary (5; 3)-polycycles given inTable 1. The connected components of the cores are enumerated as follows. The core of the special(trivial) polycycle D is empty. The core of the polycycle E1 consists of a single vertex. If eachpentagon of an elementary (5; 3)-polycycle has at most three vertices from the core that are arrangedin succession along the perimeter of the pentagon, then the core does not contain pentagons andhas the form of a geodesic (see the elementary (5; 3)-polycycles Ei, i � 1, B1, and A6) or a propeller(see the elementary (5; 3)-polycycle C3). If at least one pentagon of the elementary (5; 3)-polycyclecontains three vertices of the core that are arranged along the perimeter not in succession, thenthe whole pentagon belongs to the core. Only in the case of one or two pentagons the core canadditionally contain one or two pendant edges (see A5, B3, C2 and A4, B2, C1). If the core containsmore than two pentagons, then the total number of these pentagons can only be 3, 4, or 6 (see A3,A2, and A1). The completeness of the list of elementary (5; 3)-polycycles is veri�ed.Table 1 presents all elementary (5; 3)-polycycles, i.e., elementary summands of all (5; 3)-polycycles. The vertices of their cores are displayed in bold type. Using Table 1, one can easilyshow that any (5; 3)-polycycle is obtained by gluing together elementary (5; 3)-polycycles alongtheir open edges, i.e., along the edges both of whose ends have degree 2. Here, we only deal withthe gluings of elementary polycycles such that the core of every elementary polycycle coincideswith a connected component of the core of their union; we treat every elementary polycycle as anelementary summand (maximal elementary subpolycycle; see Lemma 1). In Table 1, each case isdenoted by a certain letter with a subscript; two numbers indicate the values of the parametersp5 and nint; for example, a triplet of the form (Es: s + 2; s) below the �gure in Table 1 impliesthat the �gure presents an elementary (5; 3)-polycycle Es with p5 = s + 2 and nint = s. Onlythe class E consists of a countable number of elementary polycycles Es with s � 1; among the�gures of Table 1, elementary polycycles Es are indicated only for s � 5. Note that, for the trivialelementary polycycle, the pentagon D, any of its edges can be identi�ed with an open edge of anyother elementary polycycle, either trivial or nontrivial. If we want the pentagon D to remain anelementary summand, such an identi�cation can be made for yet another edge of D not adjacentto the already identi�ed one. The elementary (5; 3)-polycycles A1, A2, A3, A4, A5, and A6 (seeTable 1) correspond each to its own unique (5; 3)-polycycle because neither of them has open edges.The polycycles A1, A2, A3, A4, B3, and A5 are the only extremal ones for p5 = 11; 10; 9; 8; 7, and 6;their dual polycycles are the only extremal ones for p5 = 1; 2; 3; 4; 5, and 6. (The polycycles A1, A2,A3, A4, and A5 are the only nontrivial polycycles that are isometric subgraphs of the skeleton (53);they are precisely those �ve (5; 3)-polycycles that are called inscribed in [10].)Theorem 1 is proved by the enumeration of all possible gluings of elementary (5; 3)-polycycleswith open edges. For example, for p5 � 0 (mod 10), an extremal polycycle is obtained by gluingonly the copies of the polycycle C1, while, for p5 � 9 (mod10) or p5 � 8 (mod10), one shouldglue together the copies of the polycycle C1 and one or two copies of the polycycle B2 (alwaysPROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



EXTREMAL AND NONEXTENDIBLE POLYCYCLES 121Table 1. Elementary (5; 3)-polycycles and their cores
A1. 11, 15 A2. 10, 12 A3. 9, 10
A4. 8, 8 A5. 6, 5 A6. jZj, jZj

B1. jNj, jNj B2. 9, 9 B3. 7, 6
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C1. 10, 10 C2. 8, 7 C3. 6, 4

D. 1, 0 E1. 3, 1 E2. 4, 2
E3. 5, 3 E4. 6, 4 E5. 7, 5
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122 DEZA, SHTOGRINat a deadlock). An elementary polycycle Exq2 is extremal for n(x) = x y 2 � 10; however, evenfor x = 12, there is another extremal (5; 3)-polycycle that is obtained by gluing the elementarypolycycle C1 together with two copies of the elementary polycycle D along open edges; for x =13; 14, and 15, C1SE1, C1SE2, and C1SE3 are also extremal. A more detailed enumeration ofgluings shows that all rational numbers from the segment [13 ; 1] can be realized as densities of �nitepolycycles without involving the pentagon D in the gluing. For example, density 13 is realized bythe proper polycycle E1, density 1 is realized by the improper polycycle C1, and all intermediatedensities are realized by appropriate gluings of the copies of these two polycycles taken in necessaryproportions. In this case, irrational densities are obtained by gluing an in�nite number of copies ofthe polycycles E1 and C1. Moreover, if we admit copies of the pentagon D in the gluings, then alldensities from the segment [0; 13 ] will also be realized. Theorem 1 is proved.Remark 2. If an (r; q)-polycycle P can be obtained from an (r; q)-polycycle P 0 by adding oner-gon, we denote this as P 0 ! P . Using this notation, one can express all such relations betweenelementary (5; 3)-polycycles from Table 1 as follows: Es ! Es+1 for s � 1; E3 ! C3; A5 ! B3 !C2; A4 ! A3 ! A2 ! A1; E5 ! C2; A4 ! B2 ! A2; C1; E4 ! B3; E6 ! B2; E7 ! C1; andB1 ! B1.All (3; 3)-, (4; 3)-, and (3; 4)-polycycles were obtained in [12] (proper) and [2] (improper); in thecase of (r; q) = (3; 3), the pairs (pr; nint) are (1; 0), (2; 0), and (3; 1); in the case of (r; q) = (4; 3), thepairs (pr; nint) are (m; 0) for any m � 1, (jNj; 0) and12 (jZj; 0), (3; 1), (4; 2), and (5; 4); in the case of(r; q) = (3; 4), the pairs (pr; nint) are (m; 0) for any m � 1, (jN j; 0) and13 (jZj; 0), (4; 1), (5; 1), (6; 1),(6; 2), and (7; 3). Among these pairs, those with nint � 1, except for the pair (pr; nint) = (6; 1), arerealized only by proper polycycles; all improper polycycles, except for the case (pr; nint) = (6; 1),have nint = 0; i.e., they are outerplanar.Theorem 2. Let (r; q) = (3; 5). Then,(i) if x � 0; 1 (mod18); then n(x) = bx3 c except that n(18) = 8 and n(19) = 9; if x 6�0; 1 (mod 18); then n(x) = bxq23 c except that n(x) = bx+13 c for x = 10; 12; 13; 14; 28; 30; 31; 33; 35and n(x) = bx+43 c for x = 15; 16; 17; 34;(ii) all possible densities of (3; 5)-polycycles, except those excluded in (i), form the segment[0; 13 ]. All rational densities are realized by �nite improper polycycles;(iii) for p3 � 19; we have n(x) = 0 for 0 � x � 4; n(x) = 1 for 5 � x � 7; n(8) = n(9) = 2;n(10) = n(11) = 3; n(12) = n(13) = 4; n(14) = 5; n(15) = n(16) = 6; n(17) = 7; n(18) = 8; andn(19) = 9. All extremal polycycles with p3 � 19 are proper and, except for the cases p3 = 9; 11 (twopolycycles for each p3) and p3 = 4; 7; 13; 16 (three polycycles for each p3), unique; any polycyclecomplementary to an extremal (proper) one is also extremal.Proof. To prove Theorem 2, we apply the same strategy as for Theorem 1 except that now enu-merations are larger (see Table 2 of elementary (3; 5)-polycycles and their cores). A new di�cultyconsists in the fact that one has to use a special (trivial) elementary polycycle, a triangle d (withempty core), to glue certain elementary (3; 5)-polycycles. In this case, a polycycle is glued togetherwith the triangle d along a weakly open edge, i.e., along an edge whose ends have degrees 3 and 4or 4 and 4. Along a strongly open edge, i.e., along an edge both of whose ends have degree 3, anyelementary polycycle can be glued together with any other elementary polycycle. Again, we onlyspeak of those gluings of elementary polycycles for which the core of every elementary polycyclecoincides with a connected component of the core of their union; i.e., every elementary polycycle is12Here we distinguish two cases that are formally denoted by (jNj; 0) and (jZj;0) depending on whether a polycycle(considered as a chain) is in�nite only in one direction or in two opposite directions; if we used a uni�ed formalnotation (@0; 0) or (1; 0), we would have lost this additional information.13See the preceding footnote.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



EXTREMAL AND NONEXTENDIBLE POLYCYCLES 123Table 2. Elementary (3; 5)-polycycles and their cores
a1. 19, 9 a2. 18, 8 a3. 17, 7
a4. 16, 6 a5. 15, 6 a6. 3jZj, jZj
b1. 3jNj, jNj b2. 18, 6 b3. 15, 5
b4. 13, 4 c1. 16, 6 c2. 14, 5
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c3. 12, 4 c4. 10, 3 d. 1, 0
e1. 5, 1 e2. 8, 2 e3. 11, 3
e4. 14, 4 e5. 17, 5 e6. 20, 6
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124 DEZA, SHTOGRINTable 3. Minimal nonembeddable (5; 3)- and (3; 5)-polycycles
E4 c3 d [ e2 [ dD [E2 [Dan elementary summand of the enveloping polycycle. An outerplanar (3; 5)-polycycle consists onlyof triangles d, i.e., of trivial elementary summands with empty cores.The completeness of Table 2 is also proved by a simple enumeration of the cores. The core ofthe polycycle d is empty. The core of the polycycle e1 consists of a single vertex. If there are atmost two vertices from a core in each triangle, then the core does not contain triangles and has theform of a geodesic (see ei, i � 1, as well as b1 and a6). If there is one triangle in a core, the lattermay additionally have one pendant edge (see c4 and b4). If there are two triangles in a core, thelatter may additionally have one or two pendant edges (see c3, b3, and b2). If there are more thantwo triangles in a core, then their total number may only be 3, 4, 5, 6, 8, or 10 (see a1, a2, a3, a4,a5, c1, and c2). The completeness of Table 2 is proved.In Table 2, each elementary (3; 5)-polycycle is denoted by a certain letter with a subscript; twonumbers indicate the values of the parameters p3 and nint. Only the class e consists of a countablenumber of elementary polycycles es with s � 1, and a triplet of the form (es: 3s+2; s) below a �gurein Table 2 indicates that the polycycle es has the parameters p3 = 3s + 2 and nint = s; Table 2presents elementary polycycles es with subscripts s � 6 only. The rest is analogous to the proof ofTheorem 1.Remark 3. In [7], we considered isometric (or with a certain scale �) embeddings of (r; q)-polycycles (regarded as metric spaces of vertices in a graph with the shortest distances betweenthem) into hypercubes. In particular, in that paper, we pointed out two proper (5; 3)-polycycleswith p5 = 6 such that any (5; 3)-polycycle di�erent from (53) is embeddable (with scale � = 2)if and only if it does not contain any of these two polycycles as an induced subgraph: E4 andD [E2 [D (see [7, Theorem 2] and Table 3).The following analogue of this theorem holds for (3; 5)-polycycles.Theorem 3. Any (3; 5)-polycycle di�erent from the edge skeleton of the icosahedron (35) andthe skeleton of the icosahedron with one vertex removed (35) y v is embeddable (with scale � = 2)if and only if it does not contain, as an induced subgraph, any of the two proper (3; 5)-polycycleswith 10 vertices shown in Table 3; namely, c3 and d [ e2 [ d.The proof of Theorem 3, based on [15], is given in [16].Remark 4. Theorem 3 completes the solution of the embeddability problem for all (r; q)-polycycles. For (r; q) 6= (5; 3); (3; 5), only three polycycles are nonembeddable: the cube withoutan edge, the octahedron without an edge, and the octahedron with a split vertex. All parabolicand hyperbolic (r; q)-polycycles are embeddable. Parabolic regular tilings (rq) are embeddable intoa �nite-dimensional lattice, and hyperbolic regular tilings (rq) are embeddable into an in�nite-dimensional lattice. Certain (r; q)-polycycles with parabolic parameters (r; q) cannot be embeddedinto a �nite-dimensional lattice, while, with hyperbolic parameters, they can.Remark 5. The polycycles in Table 3 are partial but not isometric subgraphs in (53) and (35);among these polycycles, only the elementary polycycles E4 and c3 are induced subgraphs, which arealso shown in Tables 1 and 2. Among the polycycles shown in Tables 1 and 2, only the polycyclesA1 � A5; C3 � E3 � E2 � E1 � D and a1 � a5 � b4 � c4; e3 � e2 � e1 � d are isometricallyPROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



EXTREMAL AND NONEXTENDIBLE POLYCYCLES 125embeddable into half-cubes (i.e., are embeddable into hypercubes isometrically with scale � = 2);here, the symbol � means that \a superpolycycle contains a subpolycycle." One can easily verifythat any embeddable �nite (r; q)-polycycle is embeddable into a (k2+z)-dimensional cube for even rand is embeddable with scale � = 2 into a (k+z)-dimensional cube for odd r; here, k is the perimeterof the polycycle and z is the number of closed zones (i.e., cycles consisting of opposite edges of facesthat do not contain the outer face). For example, among all embeddable polycycles of Tables 1and 2, only A1; a1, and a5 have z > 0; namely, z = 5, z = 3, and z = 1, respectively.The method described above is based on the fact that, for the elliptic parameters (r; q) = (5; 3)and (3; 5), Lemma 1 and Tables 1 and 2 provide a convenient description of polycycles. However,this is not the case for nonelliptic (r; q).Theorem 4. For parabolic and hyperbolic parameters (r; q); there exists a continuum of non-isomorphic elementary (r; q)-polycycles.Proof. Consider a right semi-in�nite chain of squares that �ll a strip between two parallelrays. Inside the two horizontal sides of each square of the chain, we put r y 5 and one decoratedvertices to obtain an r-gon instead of a square. There are two alternatives: either r y 5 decoratedvertices are placed on the upper side and one on the lower side or vice versa, one decorated vertexis placed on the upper side and r y 5 on the lower. Such a choice is made independently on eachsquare when we move to the right along this chain. Therefore, there is a continuum of various(nonisomorphic) chains of this kind. All of them are chains in the tiling (rq) for r � 7 and q � 3,as well as for r = 5 and q � 4. It is also clear that this (r; q)-polycycle is the core of an elementary(r; q)-polycycle consisting of this polycycle supplemented with all r-gons that are incident to it inthe tiling (rq). For r � 7 and q � 4, this elementary polycycle is proper; moreover, the projectionof its polycyclic realization on the tiling (rq) is convex in the hyperbolic plane H 2 .Now, consider the case of parabolic parameters (r; q), i.e., (r; q) = (6; 3); (4; 4), and (3; 6). Inthe square lattice, i.e., in the regular tiling (44) of the Euclidean plane R2 , we construct a chain ofsquares semi-in�nite in the upper right direction. On each step of this construction, there are twoalternatives for choosing the next square: one can choose an adjacent square either on the right onthe same level or one level higher. It is clear that there is a continuum of various (nonisomorphic)chains of this kind in the tiling (44) and each of these chains is the core of a certain elementary(4; 4)-polycycle. In�nite chains of hexagons in the tiling (63) are constructed analogously. As forthe tiling (36), combining two adjacent triangles in it into a rhomb and transforming the entiretiling (36) into a rhombic lattice combinatorially equivalent to the tiling (44), one can apply thesame line of reasoning as in the case of the square lattice. The cores of the parabolic polycyclesconstructed are outerplanar. They can be interpreted as the cores of hyperbolic polycycles (byincreasing the value of the parameter q). Theorem 4 is proved.In spite of the negative result of Theorem 4, one can easily obtain the following general estimates.Theorem 5. For any �nite (r; q)-polycycle P with a nonempty core such that each r-goncontains a vertex from the core, the following estimate is valid :1q � nintpr < rq :Proof. Take an arbitrary polycycle P satisfying the hypotheses of Theorem 5. Since thenumber of r-gons that meet at an internal vertex of the polycycle P is equal to q and each r-goncontains at least one internal vertex of the polycycle P , the number nintq counts each r-gon of thepolycycle at least once; hence, pr � nintq. Next, we tile each r-gon by 4-gons by connecting itscenter with the midpoints of the sides; the number of 4-gons in each r-gon is equal to r; the numberof 4-gons incident to any internal vertex is equal to q. Then, the number of 4-gons adjacent onlyPROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



126 DEZA, SHTOGRINto internal vertices of the polycycle P is equal to nintq, while the total number of 4-gons is equalto rpr. Hence, nintq < rpr. Theorem 5 is proved.Both estimates in Theorem 5 are, generally speaking, sharp. For example, the lower estimate isattained on a q-star of r-gons with the center at any internal vertex of an (r; q)-polycycle. To showthe sharpness of the upper estimate, we consider a square with the side m+ 1. Let us partition itinto (m+1)2 unit squares. We obtain an (r; q)-polycycle with parameters r = q = 4 that has exactlym2 internal vertices. For a sequence of such (4; 4)-polycycles, we obtain the following relation inthe limit as m!1: nintpr = m2(m+ 1)2 ! 1;hence, the upper estimate in Theorem 5 is also sharp.Theorem 5 shows that nint(pr) has a linear growth order in pr; however, we leave open thequestion of the exact parameters of the growth order of the function nint.We suppose that, for any nonelliptic parameters (r; q), there are proper polycycles among ex-tremal (r; q)-polycycles; this is true for any elliptic parameters: all known extremal (r; q)-helicenes Pwith elliptic parameters (r; q) have pr(P ) > pr(rq).Remark 6. Extremal polycycles represent the opposite extreme case of outerplanar polycy-cles. For given r, q, and pr, an extremal polycycle maximizes the number of internal vertices nintand the number of internal (i.e., those not belonging to the boundary) edges eint; it also minimizesthe number of boundary edges (perimeter) k, the total number of edges e, and the total numberof vertices n. Indeed, the Euler formula (nint + k) y (eint + k) + (pr + 1) = 2 and the equalityrpr = 2eint + k imply the relationsnint = eint y pr + 1 = yk2 + pr(r y 2)2 + 1 = ye+ pr(r y 1) + 1 = yn+ pr(r y 2) + 2;which con�rm the aforesaid.The extremal animals mentioned in [11] are, in our terms, proper (4; 4)-, (6; 3)-, and (3; 6)-polycycles with the minimum number of edges e and, hence, with the maximum number nint.In [11], it was proved that such polycycles have e = 2p4 + d2pp4 e, e = 3p6 + dp12p6 y 3 e, ande = p3 + lp3+p6p32 m edges, respectively, and that, among them, there are always polycycles thatgrow like a spiral. NONEXTENDIBLE POLYCYCLESConsider another natural concept of maximality of polycycles. An (r; q)-polycycle is callednonextendible if it is not a partial subgraph of any other (r; q)-polycycle, i.e., if an addition of anynew r-gon removes it from the class of (r; q)-polycycles. It is clear that a polycycle de�ned by theskeleton of any tiling (rq) is nonextendible, while all other nonextendible polycycles are helicenes.It is also clear that any 3-connected (r; 3)-polycycle is nonextendible.It turned out that Tables 1 and 2 also facilitate the determination of nonextendible (r; q)-polycycles for spherical (r; q).Theorem 6. All nonextendible polycycles di�erent from the skeleton (rq) are given by fourimproper (r; q)-polycycles (two �nite and two in�nite ones) depicted in Table 4 and a continuumof in�nite improper (r; q)-polycycles for any pair (r; q) 6= (3; 3); (3; 4); (4; 3).Proof. The case (r; q) = (3; 3); (3; 4); (4; 3) follows immediately from the list of these polycyclesgiven in [2]. It is clear that doubly-in�nite and nonperiodic (at least in one direction) sequencesof glued copies of the elementary polycycles b2 and e6 (from Table 2) yield a continuum of in�nitePROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



EXTREMAL AND NONEXTENDIBLE POLYCYCLES 127Table 4. Examples of nonextendible elliptic (r; q)-polycycles
(r; q) = (3; 4) (r; q) = (3; 5) (r; q) = (4; 3) (r; q) = (3; 4)nonextendible (3; 5)-polycycles. The same is true for the gluings of copies of the elementary poly-cycle C2 (from Table 1) and C 02 (obtained from C2 by rotation through �), which yield a continuumof in�nite nonextendible (5; 3)-polycycles.In nonelliptic cases, i.e., for (r; q) 6= (3; 3); (3; 4); (3; 5); (4; 3); (5; 3), we consider in�nite nonex-tendible polycycles obtained from (rq) by rejecting certain nonadjacent r-gons followed by takinga universal covering. If we reject a countable number of r-gons using nonperiodic sequences ofrejected r-gons, then (due to an ambiguous choice of the rejected r-gons at each step, similarto the choice of squares of the in�nite chain in the tiling (44) in the proof of Theorem 4), weobtain a continuum of di�erent polycycles. It is clear that, when rejecting di�erent (noncongruent)sequences of r-gons, the universal coverings prove to be di�erent (see Theorem 2 from [3] and [6]on a one-to-one cellular mapping, which is precisely up to congruence).For the parameters (r; q) = (3; 5), we succeeded in proving that there do not exist nonextendible�nite polycycles except for one,14 which is depicted in the second �gure in Table 4 (where theicosahedron and octahedron with a split vertex are presented). For (r; q) = (5; 3), this resultfollows from the data of Table 1, Lemma 1, and Remark 1.It remains to prove the nonexistence of �nite nonextendible polycycles for nonelliptic param-eters (r; q). Here, it is convenient to return to the old, although more cumbersome, notations,which were mentioned at the beginning of the paper. In [3{6], each (r; q)-polycycle �(G) and thestandard tiling (rq) were put in one-to-one correspondence with an abstract two-dimensional poly-hedron P(G) and a standard polyhedronK(rq), respectively,15 that are combinatorially isomorphicto the above polycycle and tiling and are composed of isometric regular Euclidean r-gons, and theexistence of a continuous locally isometric cellular mapping f : P(G)! K(rq) was proved.Since the angle of a regular r-gon is equal to (ry 2)�=r and the number of regular r-gons thatmeet at an internal vertex of the polyhedron P(G) is equal to q, the curvature of any internalvertex of the polyhedron P(G) is equal to! = 2� y r y 2r q�:Hence, the total curvature of the polyhedron P(G) is equal to
 = nint 2(r + q)y rqr �:If nint = 0, i.e., an (r; q)-polycycle �(G) is outerplanar, then the curvature 
 of the correspondingpolyhedron P(G) is equal to zero for any parameters (r; q). If nint > 0, then the curvature 
 is14The absence of other nonextendible (3; 5)-polycycles is proved by a thorough enumeration; however, we do notpresent it here; we are trying to make this enumeration shorter.15Here, it is pertinent to recall the following relations (see [3{5]): �(G) �= P(G) for any parameters (r; q); K(rq) �=(rq) for elliptic and hyperbolic parameters and K(rq) � (rq) for parabolic parameters (r; q); and P(rq) � K(rq)for parabolic and hyperbolic parameters (r; q), but P(rq) � K(rq)kF for elliptic parameters (the interior of theface F is removed from the surface of the Platon body; a sphere cannot be completely embedded into a plane).PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



128 DEZA, SHTOGRINpositive, zero, or negative, depending on whether the parameters (r; q) are elliptic, parabolic, orhyperbolic, respectively.Any internal edge of a polyhedron P(G) belongs to exactly two r-gons, while any boundaryedge belongs to only one r-gon. Therefore, the following equality holds:rpr = 2eint + k;where, again, eint is the number of internal edges of the polyhedron P(G) and k is the numberof boundary edges. On the other hand, since the number of boundary vertices and the numberof boundary edges of the polyhedron P(G) are equal to the same number k (the perimeter of thepolyhedron), these two numbers in the Euler formula cancel out, and a condensed version of thisformula reads as nint y eint + pr = 1:From the last two formulas, we obtain(r y 2)pr = 2nint + (k y 2):Now, let us calculate the sum of plane angles of the polyhedronP(G); we do this in two di�erentways: (i) we �rst calculate the sum of angles in separate polygons and then sum up over all polygonsand (ii) we �rst calculate the sum of angles at separate vertices and then sum up over all vertices,both boundary and internal. As a result, we obtain the equalitypr(r y 2)� = kXi=1 'i + nint r y 2r q�;where 'i denotes the total angle at the ith boundary vertex of the polyhedron P(G). Combiningthis formula with the preceding one yieldsnint �2� y r y 2r q�� = kXi=1 'i y (k y 2)�: (1)The geometrical meaning of this equality can be formulated as the following discrete analogue ofthe well-known Gauss{Bonnet theorem (see [13]).The excess of the sum of angles of a geodesic k-gon (as compared with the sum of angles ofa plane k-gon) is equal to its curvature; i.e., if '1; : : : ; 'k are the angles of a geodesic k-gon thatis the boundary of the polyhedron P(G) and !1; : : : ; !nint are the curvatures of internal vertices ofthe polyhedron P(G); then kXi=1 'i y (k y 2)� = nintXj=1!j:In our case, !1 = : : : = !nint = !; where ! = 2� y (r y 2)q�=r.Let kj be the number of vertices of degree j, where j = 2; 3; : : : ; qy1; q, that are situated on theboundary of the polyhedron P(G) and k be the total number of vertices of the boundary polygonof the polyhedron P(G), i.e., its perimeter. Then,k = k2 + k3 + : : :+ kqq1 + kq: (2)Let us calculate the sum Pki=1 'i y (k y 2)� on the right-hand side of equality (1) for a �nitepolyhedron P(G) considered as a geodesic k-gon. SincekXi=1 'i = n1 � k2 + 2 � k3 + : : :+ (q y 2) � kqq1 + (q y 1) � kqor y 2r �;PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



EXTREMAL AND NONEXTENDIBLE POLYCYCLES 129by formula (2) we obtain the equalitykXi=1 'i y (k y 2)� = ��1 � r y 2r y 1� k2 + �2 � r y 2r y 1� k3 + : : :+ �(q y 2) � r y 2r y 1� kqq1 + �(q y 1) � r y 2r y 1� kq�� + 2�: (3)For nonelliptic pairs (r; q), the regular tilings (rq) are not unique in�nite nonextendible (r; q)-polycycles; there exists a continuum of other (r; q)-polycycles such that every vertex has degree q.However, this is not so in the �nite case.Consider a particular case of a �nite polyhedron P(G) in which each vertex has degree q. Inthis case, 2e = qn, where n is the total number of vertices and e is the total number of edges ofP(G); in view of the equality 2e = rpr + k, we can rewrite the Euler formula ny e+ pr = 1 asn2(q + r)y qr2r = 1 + kr :Hence, 2(q + r) y qr > 0; i.e., the parameters (r; q) are elliptic. For any of the �ve elliptic pairs(r; q) = (3; 3); (3; 4); (3; 5); (4; 3); (5; 3), we directly verify that the equality k = r holds and that thepolyhedron P(G) is in fact the surface of a Platon body without one face.Now, let a �nite polycycle �(G) be nonextendible but di�erent from the skeleton of a regulartiling (rq). In this case, there certainly exist vertices on the boundary of the polyhedron P(G)whose degrees are less than q.Lemma 2. If a �nite polyhedron P(G) has a vertex whose degree is less than q; then the totalnumber of these vertices is at least two.Proof. We will prove Lemma 2 by contradiction. Suppose that a �nite polyhedron P(G) hasonly one vertex whose degree is less than q. Denote this vertex by A1. All the other boundaryvertices A2; A3; : : : ; Ak (the numbering corresponds to moving along the boundary) have degree q.Choose a 
ag � in the polyhedron P(G) that consists of the vertex A1, edge A1A2, and r-gonincident to them and construct a continuous locally isometric cellular mapping f : P(G) ! K(rq)(see [3, 5, 6]). The mapping f is uniquely de�ned by the 
ag � in the polyhedron P(G) and itsimage f(�) in the polyhedron K(rq).Let us take the restriction of this mapping onto a two-dimensional chain consisting of r-gons ofthe polyhedron P(G) incident to its boundary and try to �nd out what is the image of this chainunder the mapping f .Consider a closed edge path A01A2A3 : : : AkA001 whose beginning A01 and end A002 are situatedat the same vertex A1. Moving along this path, we enumerate16 all r-gons of P(G) incident toit; we start the enumeration from the 
ag �. Thus, we obtain a sequence of r-gons in which allneighboring r-gons are adjacent along a side. The set of all r-gons of this sequence constitutesa closed chain. The image of this chain under the mapping f must also be closed.Since the edge path A01A2A3 : : : AkA001 is closed, its image under the mapping f is also closed.Hence, the equality17 f(A001) = f(A01) holds, and, henceforth, we will split neither the vertex A1 norits image f(A1).Now, we pass on to the analysis of the mappings of stars. All r-gons of the polyhedron P(G)incident to a vertex A constitute a star ; we denote it by StA. Let us show that the followingrelations hold: Stf(Aj) = F [ f(StAj); j = 2; 3; : : : ; k;16It is convenient �rst to cut o� the vertices of the polyhedron P(G) and then enumerate all r-gons encounteredwhile moving along the smoothed boundary in the sequential order.17This equality implies that the perimeter k satis�es the relation k = mr, m 2 N.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



130 DEZA, SHTOGRINwhere F is a �xed r-gon of the polyhedronK(rq), which is the same for any j = 2; 3; : : : ; k. Indeed,f maps the 
ag � to its image f(�). Denote by F the r-gon from the polyhedron K(rq) that isadjacent to f(�) along the edge f(A1A2). Since the number of r-gons of the star StA2 in P(G) isequal to qy 1 and the number of r-gons of the star Stf(A2) in K(rq) is equal to q, the r-gon F hasone more edge f(A2A3) on its boundary; hence, we obtain the equality Stf(A2) = F [ f(StA2).For the same reason, the r-gon F has the edge f(A3A4) on its boundary, whence we obtain theequality Stf(A3) = F [ f(StA3), and so on. Thus, the relations presented are proved.Moving along the chain of r-gons taken from the stars StA2;StA3; : : : ;StAk, starting from ther-gon with edge A2A1 and ending at the r-gon with edge AkA1, we write out their images underthe mapping f . The image of the r-gon with the edge A2A1 lies outside the r-gon F and is adjacentto it along the edge f(A2A1). The image of the r-gon with the edge AkA1 lies outside the r-gon Fand is adjacent to it along the edge f(AkA1).If the degree of the vertex A1 is no less than three, then at least two r-gons from the polyhedronP(G) are incident to the vertex A1. For the two of these r-gons that are adjacent to the boundaryalong the edges A1A2 and A1Ak, we have already obtained two images above; both of them lieoutside the r-gon F: one is incident to the edge f(A1A2), while the other, to the edge f(A1Ak).These two images are di�erent indeed because the total number of r-gons of the polyhedron K(rq)that are incident to the vertex f(A1) is no less than three (the degree q of every vertex of K(rq)is greater than or equal to 3). Since the degree of the vertex A1 is less than q, these r-gonscannot both belong to the image of the star StA1 under the mapping f ; in the present case,Stf(A1) 6= F [ f(StA1). We obtained a contradiction.If the degree of the vertex A1 equals two, then only one r-gon from the polyhedron P(G) isincident to the vertex A1, which is adjacent to the boundary along the edges A1A2 and A1Aksimultaneously. This is the 
ag �. As before, we have already obtained two images of the 
ag �;both of them lie outside the r-gon F: one is adjacent to F along the edge f(A1A2), while the other,along the edge f(A1Ak). These two images are di�erent indeed because the total number of r-gonsof the polyhedron K(rq) that meet at the vertex f(A1) is no less than three (q � 3). However,there must be only one image of the same r-gon (in this case, the 
ag �) under the mapping f .We obtained a contradiction again.Hence, the situation when only one vertex of the polyhedron P(G) has degree less than q isimpossible; there must be at least two such vertices. Lemma 2 is proved.End of the proof of Theorem 6. Consider an arbitrary �nite nonextendible (r; q)-polycycle�(G) and prove that the corresponding polyhedron P(G) always has positive curvature, so thatthe parameters (r; q) are elliptic.We will prove this by contradiction. Suppose that the parameters (r; q) are parabolic or hy-perbolic, i.e., the inequality qr y 2(q + r) � 0 holds. Then, the following estimate is valid for thecoe�cient of kq in (3): (q y 1) rq2r y 1 = qrq2(q+r)r + 2r � 2r .On the boundary of the �nite nonextendible polycycle �(G), which is di�erent from the skele-ton of a Platonic body, there must certainly exist vertices of degree less than q in addition tovertices of degree q; by Lemma 2, the number of such vertices must be no less than two, asthe number of vertices of the corresponding polyhedron P(G). The total number of verticeson the boundary must be greater than r (see the corollary to the lemma in [3]). Any two ver-tices of degree less than q must be separated by at least r y 1 vertices of degree q; otherwise,our polycycle �(G) would be extendible.18 It follows from the aforesaid and condition r � 318If, between two vertices with degrees less than q on the boundary of the polycycle �(G), there are only r k svertices of degree q, where s � 2, then these vertices are connected by a boundary edge chain of length rk s+1;this chain can be closed to give a new r-gon by adding a new chain of length sk 1, where sk 1 � 1, to the oldchain on the outer side of the polycycle �(G). The degree of these two vertices remains no greater than q; thus,the polycycle is extended.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



EXTREMAL AND NONEXTENDIBLE POLYCYCLES 131that kq � (r y 1) qq1Xj=2 kj � 2 qq1Xj=2 kj:Therefore, by (3), the quantity Pki=1 'i y (k y 2)� calculated for the polyhedron P(G) obeys theestimate kXi=1 'i y (k y 2)� � ��1 � r y 2r y 1 + 2 � 2r� k2 + �2 � r y 2r y 1 + 2 � 2r� k3 + : : :+ �(q y 2) � r y 2r y 1 + 2 � 2r� kqq1�� + 2�: (4)The coe�cient of kj on the right-hand side of inequality (4) increases as the index j increases.Since the least coe�cient (that of k2) is positive, all the other coe�cients of kj are also positive.The values of kj themselves are nonnegative (and there even exists one positive kj because thereare vertices on the boundary of P(G) whose degree is less than q). Hence,kXi=1 'i y (k y 2)� � 2�:The positivity of the right-hand side of inequality (4) implies the positivity of the left-hand side.Thus, in view of (1), the curvature 
 of the geodesic k-gon is positive. The resulting inequality2(r+ q)y qr > 0 contradicts the assumption made. Hence, a �nite nonextendible polycycle cannothave parabolic or hyperbolic parameters (r; q); these parameters are elliptic. Theorem 6 is proved.Note that the number of (r; q)-polycycles such that the degree of the mapping of an internalpoint of any face under a continuous locally isometric cellular mapping f : P(G)! K(rq) is equalto 1 and that are extendible (with the loss of this property)is equal to 0 for the parameters (r; q) = (3; 3); (3; 4);is equal to 1 for the parameters (r; q) = (4; 3) (this is P2 � P5);is �nite for the parameters (r; q) = (5; 3); (3; 5); andis in�nite for the remaining parameters (r; q).The �niteness of this number for the parameters (r; q) = (5; 3) and (3; 5) follows from the fact thatthe number of 5-gons and 3-gons must be no greater than 12 and 20, respectively.Note also that one can obtain interesting examples of in�nite nonextendible (r; q)-polycyclesas universal coverings for the complement to the covering of all vertices of the regular tiling (rq)by nonadjacent r-gons (if such a covering exists; the cube, octahedron, and icosahedron have suchcoverings, while the tetrahedron and dodecahedron do not).EXAMPLES OF ISOHEDRAL POLYCYCLESFollowing [8], we call a polycycle P isogonal or isohedral if its automorphism group (denoted byAutP ) is transitive on the vertices or faces, respectively. In [7], we gave theorems describing such(r; q)-polycycles. Tables 5{8 below display all families of such polycycles that we have obtained.Table 5 presents all 19 isohedral (r; q)-polycycles with elliptic parameters (r; q). Among them,only 3-, 4-, and 5-gons (triangles in the three cases q = 3; 4; 5) and two in�nite (r; q)-polycycles(one of them in the two cases q = 4; 5) are isogonal.19 There is only one cactus among in�nitepolycycles; all the other are ribbons.19Table 5 does not contain the following elliptic isohedra: an exceptional (r; q)-polycycle with parameters r = 2and q = 3, because condition (i) (see the de�nition of polycycles in the Introduction) requires that r � 3, andspecial (r; q)-polycycles with parameters r � 2 and q = 2, because condition (ii) requires that q � 3 (in fact,these isohedra are not polycycles but monocycles since they do not have any strictly proper subpolycycles).PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



132 DEZA, SHTOGRINTable 5. All 19 isohedral elliptic (r; q)-polycycles(r; q) (3,3) (3,4) (4,3) (3,5) (5,3)DrhD2hDqhpm11 � T (2; 2;1)pmm2 = T �(2; 2;1)
pma2 � T (2; 2;1)

T �(2; 3;1) � SL(2;Z)

AutP

Table 6. Examples of families of isohedral (r; q)-polycycles with a ribbon group of symmetryqqqqq pqq
q
q qqq

qq qqqqq qqq
qq qqqqq qqp
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qq qqqqq qq
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4,3 4+2a,3 4+a,4 5+a,3 3+a,4 3+a,5 4+a+b,3 4+a+b,3 4+a+b,3a > 0 a � 0 a � 0 a � 0 a � 0 a > b � 0 a > b � 0 a > b � 0pmm2 pmm2 pmm2 pma2 pma2 pma2 pma2 pma2 pm11
q q
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EXTREMAL AND NONEXTENDIBLE POLYCYCLES 133Table 7. Examples of families of isohedral (r; q)-cacti
(2+a)k, 3. a � 0; k � 3 6+2a, q. a � 0 6+a+b, q. a > b � 0T �(2; k;1) T �(2; q;1) T (2; q;1)

qq qqqq qqq q q q
q q qq q q qqqqq q q pqqqq

q qqqq q qqq qq qqqqq q q q q qqqqq q q

4+a, 2k. a � 0; k � 3 6+a, 3. a � 0 5+a, 4. a � 0T �(2; k;1) T (2; 3;1) T �(2; 4;1)
5+2a, q. a � 0 5+a+b, q. a > b � 0 5+a+b, q. a > b � 0T �(2; q;1) T (2; q;1) 3� T �(1;1;1)

q q qq q q qqqqq q q q q qqq
q qqqqq q qqqq q

qqqqqqq q qqq qqq qqqq qq
q q qq q qqqq q qqqqq q q qqqqq q q

q qq q qq qqq q qq
qq qq qqq qqqq q

q q qqqq qq q q qqqqqqqqq q q qqq q qqqq q qqqqq q q qqqqqqqq q q q
Table 8. Examples of isogonal (but not isohedral) (r; q)-polycycles

(r; q) = (3; 5) (r; q) = (4; 4)T (2; 3;1) T �(2; 4;1)PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002



134 DEZA, SHTOGRINTable 6 presents, among nine �gures, eight families of decorations (on the edge marked bya single dot, there are a decorated vertices, and, on the edge marked by two dots, there are bdecorated vertices) of the (4; 3)-polycycle P = P2�PZ (the product of a segment and an edge line)with ribbon groups of symmetry. Only the undecorated leftmost and the middle polycycles areisogonal for a = 0.Table 7 presents all families of nonribbon isohedral polycycles (namely, nine families of cacti)together with their parameters (r; q) and the automorphism groups AutP . There is only oneisogonal case among the polycycles of Table 7, the left polycycle in the �rst row for a = 0.The automorphism group of the rightmost polycycle in the bottom row is in one-to-one cor-respondence with the group T (2; 3;1) but is di�erent from it: each central inversion is replacedwith a re
ection in a line. This is also a subgroup of index 2 of the group T �(2; 3;1); however, itis isomorphic to the product 3� T �(1;1;1). It turned out that, except for this case, all knownisohedral polycycles have triangular groups T (l;m; n) or T �(l;m; n) as AutP .Table 8 presents two more cacti: a (3; 5)-polycycle representing a universal covering of anicosahedron from which four pairwise disjoint faces are removed and a (4; 4)-polycycle representinga universal covering of a square lattice from which a square sublattice of index 4 is removed. Thesepolycycles are isogonal but not isohedral; they have two orbits of faces with respect to the groupAutP : the faces of one orbit have edges on the boundary of the polycycle P , while the faces ofanother orbit have no edges on the boundary of the polycycle P ; except for these two, we do notknow any other such polycycles.20Note that the �rst polycycle in Table 7 for k = 2 degenerates into a ribbon (see the secondpolycycle in Table 6), and the fourth polycycle in Table 7 for k = 2 also degenerates into a ribbon(see the third polycycle in Table 6). All the other polycycles in Table 6, or, more precisely, theirrepresentatives, are given in Table 5: the �rst; the fourth, �fth, and sixth for a = 0; and theseventh, eighth, and ninth for a = 1 and b = 0. The seventh polycycle from Table 7 for a = 0and q = 3 is also presented in Table 5 (see the intersection of the column (r; q) = (5; 3) and rowAutP = T �(2; 3;1)).Recall that T �(l;m; n) denotes the Coxeter triangular group whose fundamental triangle hasangles �l , �m , and �n , while T (l;m; n) denotes its subgroup (of index 2) of motions of the �rstkind, i.e., orientation-preserving motions. For ribbon groups, there are following relations betweengroups: pmm2 = T �(2; 2;1), T (2; 2;1) = p112 � pma2 � pm11 6� p1m1. Recall also thatT (2; 3;1) � PSL(2;Z) (a modular group) and T �(2; 3;1) � SL(2;Z).ACKNOWLEDGMENTSThe second author was supported by the Russian Foundation for Basic Research (project no. 02-01-00803) and by the program \Leading Scienti�c Schools of the Russian Federation" (projectno. 00-15-96011). REFERENCES1. Deza, M. and Shtogrin, M.I., Embedding of Chemical Graphs in Hypercubes, Mat. Zametki, 2000, vol. 68, no. 3,pp. 339{352.2. Deza, M. and Shtogrin, M.I., Polycycles, Voronoi Conf. on Analytic Number Theory and Space Tilings, Kiev:Inst. Mat., Nat. Akad. Nauk Ukr., 1998, pp. 19{23.3. Deza, M. and Shtogrin, M.I., Primitive Polycycles and Helicenes, Usp. Mat. Nauk, 1999, vol. 54, no. 6,pp. 159{160.20Table 8 does not contain exceptional elliptic (r; q)-polycycles with parameters r = 2 and q � 4 because theysatisfy neither condition (i), which requires that r � 3, nor condition (iii), which requires that the intersection ofcells should be a cell again; these polycycles are also isogonal but not isohedral; all q!=2 of their planar realizationsprove to be pairwise isomorphic.PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 239 2002
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