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Abstract—We continue the analysis of (r,¢)-polycycles, i.e., planar graphs G that admit
a realization on the plane such that all internal vertices have degree ¢, all boundary vertices have
degree at most ¢, and all internal faces are combinatorial r-triangles; moreover, the vertices,
edges, and internal faces form a cell complex. Two extremal problems related to chemistry
are solved: the description of (r,¢)-polycycles with the maximal number of internal vertices
for a given number of faces, and the description of nonextendible (r, q)-polycycles. Numerous
examples of isohedral polycycles (whose symmetry groups are transitive on faces) are presented.
The main proofs involve an abstract cell complex P(G) obtained from a planar realization of
the graph G by replacing all its internal faces by regular Euclidean r-gons.

INTRODUCTION

Consider a planar® graph G. This graph can be embedded in the plane so that no two of its
edges intersect. This embedding (a planar realization of the graph G) is a so-called flat graph.
Upon adding to the flat graph all its faces, we obtain a flat map. All bounded faces of a flat map
are internal faces of a flat graph. The vertices that do not belong to the unbounded face of a flat
map are called internal vertices of a flat graph.

Definition. Suppose that a planar realization of a nonseparable planar graph G with girth r
and the maximal degree of vertices ¢ satisfies the following three conditions:

(i) All internal faces are combinatorial r-gons with r > 3.
(ii) All internal vertices have the same degree g > 3.
(iii) The vertices, edges, and internal faces form a cell complex.

Then, the graph G supplemented with internal faces (taken from the given planar realization of
the graph G) is called an (r, q)-polycycle and denoted by II(G)

If at least one planar realization of the planar graph G satisfies conditions (i)-(iii), where r
is the girth of the graph and ¢ is the maximal degree of vertices, we will say that the graph G
admits an (r, q)-polycyclic realization. If G admits an (r,q)-polycyclic realization, then it admits
exactly one such realization in the general case (see [3-6]). Only in five exceptional cases when the
graph represents the edge skeleton of a Platonic body, the number of (r, q)-polycyclic realizations
of G is equal to the number of faces of the Platonic body; in any of these five cases, the polycyclic
realizations are isomorphic. We classify the result obtained [3—6] as a specific uniqueness theorem for
a polycyclic realization. A graph G admitting an (r, q)-polycyclic realization, the (r, q)-polycyclic
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118 DEZA, SHTOGRIN

realization of the graph G, and the (r,q)-polycycle II(G) are three different concepts that are
uniquely defined by each other (see above). Sometimes, we will use a common short term polycycle
for any of these three concepts (when it is clear from the context of which concept we speak).

We have proved that, for any nonseparable flat graph, condition (iii) follows from conditions (i)
and (ii). Condition (ii) implies that the degree of any internal vertex of the polycycle IT(G) is equal
to the maximal degree of vertices of G. Naturally, the degree of any boundary vertex of II(G) does
not exceed the maximal degree g; it is equal to a certain number j, where 2 < j < q. The set
of internal vertices of the polycycle II(G) may be empty (when the flat graph G is outerplanar).
A separate r-gon is a special (r,q)-polycycle with parameter ¢ = 2. As any other outerplanar
graph, it can be considered as an (r,q)-polycycle with any other (greater) numerical value of the
parameter ¢ (which is useful for the classification of subpolycycles,? see Table 5 below).

It should be noted that the concept of (r, g)-polycycle II(G) is introduced not only for a finite
graph G but also for an infinite graph. In the case of an infinite flat graph, we always assume that
there are only a finite number of vertices and edges of this graph in any finite domain of the plane.
In the case of an infinite graph G, any (r, q)-polycycle II(G) represents an infinite simply connected
domain, generally speaking, with boundary (see below and [4, 6]); in the case of a finite graph G,
any (7, q)-polycycle II(G) is a disk, which is always with boundary.

An (r,q)-polycycle is called proper if it is a partial subgraph of the edge skeleton of a regular
tiling (r9) (i.e., a tiling of the sphere S2, Euclidean plane R?, or Lobachevskii plane H? by regular
r-gons with angles 27”, so that the degree of each tiling vertex is equal to q), and a helicene otherwise.
In a full agreement with the sign of the curvature of a “plane,” the parameters (r,q) are called
elliptic if rqg < 2(r + q), parabolic if rq = 2(r + q), and hyperbolic if rq > 2(r + gq). If the (r,q)-
polycycle II(G) is not outerplanar, then these terms also correlate with the sign of the curvature of
an internal vertex of the polyhedron K(r?) that is obtained from a regular tiling (r?) upon replacing
each r-gon by a regular Euclidean r-gon. Only (r, ¢)-polycycles IT(r?) with parabolic and hyperbolic
parameters (r,q) do not have a boundary: they are isomorphic to the regular tilings (r?). In the
case of elliptic parameters (r,q), even the (r, q)-polycycle II(r?) has a boundary: the interior of
one face F is removed from the surface of a Platonic body (because a sphere cannot be completely
embedded into a plane).

There is extensive literature (see, for example, [8, §9.4; 9]) on proper (r,q)-polycycles with
parabolic parameters (r,q) = (4,4),(3,6), and (6,3); they are called polyominoes, polyamonds,
and polyhezes, respectively. For instance, the first and the last types of polycycles are considered
in physics and organic chemistry. All 39 proper (5, 3)-polycycles were obtained independently by
chemists in [10]. However, all proper polycycles for elliptic parameters (r, q) were obtained as early
as in [12]; any proper (r, q)-polycycle for these parameters has a unique dual (r,q)-polycycle (the
one that has a common boundary with the former polycycle on the occupied sphere S?).

General problems for arbitrary (r, q)-polycycles were considered in [1-7]. In particular, in [5, 6],
a criterion was obtained for a finite graph to be a polycycle.® In [3, 5, 6], it was shown that any
polycycle II(G) is cellularly mapped into a regular tiling (r?); moreover, this mapping® is uniquely
defined by a flag (i.e., incident vertex, edge, and r-gon) and its image (projection) under this
mapping. We should emphasize three important moments associated with the derivation of this
result:

First, in the neighborhood of its internal points, the (r, ¢)-polycycle II(G) has the same structure
as the tiling (7).

4A polycycle P' that is a partial subgraph of a polycycle P is called a subpolycycle of the polycycle P, while
the polycycle P" is called a superpolycycle relative to P’ (here, we use short notation; see footnote 7).

5V.P. Grishukhin pointed out that the requirement of planarity in the formulation of the criterion is redundant.

6T his mapping is always locally topological but not always globally topological; M.A. Shtan’ko pointed out that
the term homomorphism does not apply to this case.
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EXTREMAL AND NONEXTENDIBLE POLYCYCLES 119

Second, the (r, g)-polycycle II(G) is simply connected.
Third, the regular tiling (r?) has no boundary.

EXTREMAL POLYCYCLES

Let us fix arbitrary natural numbers » > 3 and ¢ > 3. For an (r, ¢)-polycycle” P, denote by p,(P)
the number of its faces® and by ni,; (P) the number of internal vertices. We call the number %Sf))
the density of the (r,q)-polycycle P. Let us introduce one more notation: n(z) = max ni(P) for
pr(P) = z. An (r,q)-polycycle P is called extremal if niy (P) = n(p,(P)), i.e., if the polycycle P
has the maximum number of internal vertices niy; for a given number of faces p,. In [10], all values
of n(z) were obtained for (5, 3)-polycycles for z < 11; all extremal (5, 3)-polycycles proved to be
unique and proper, and any dual of an extremal (r, q)-polycycle proved to be extremal again. In
addition, a problem was posed in [10] on finding the function n(z) for z > 12 for (5, 3)-polycycles.
An exhaustive answer to this problem is given by our Theorem 1.

The cell complex consisting of all vertices, edges, and faces of an (r, q)-polycycle that are not
incident with its boundary is called the core of this polycycle. A polycycle with nonempty connected
core is called a nontrivial elementary polycycle if all its faces are incident with its core; no face can
be removed from this polycycle without reducing the core. A separate r-gon is a trivial elementary

polycycle with empty core.

Lemma 1. Any (r,q)-polycycle with elliptic parameters (r,q) is uniquely represented as
a union of elementary summands, i.e., trivial and (mazimal) nontrivial elementary subpolycycles
that do not have pairwise common faces.

Proof. Consider any two vertices of an r-gon of an elliptic (r, ¢)-polycycle that belong to the
core of this polycycle. The shortest edge path? between these vertices lies inside the union of two
stars of r-gons with the centers at these two vertices; this result can easily be verified in each
particular case for any elliptic parameters (r,q) = (3,3),(3,4),(3,5),(4,3), and (5,3). Hence, any
r-gon of an elliptic (r, g)-polycycle is only incident with one simply connected component of its core.
All r-gons that are incident with the same nonempty connected component of the core constitute
a nontrivial elementary summand. If nontrivial elementary summands do not exhaust all r-gons of
an elliptic (r, g)-polycycle, then any of the remaining r-gons is not incident with the core; hence,
any of them is a trivial elementary summand (with empty core). It is clear that the decomposition
obtained of the elliptic polycycle into elementary summands is unique.'® Lemma, 1 is proved.

Note. For an arbitrary polycycle with elliptic parameters, all boundary vertices of any elemen-
tary summand are boundary vertices of the enveloping polycycle. Hence, any elementary summand
in the enveloping elliptic polycycle is isometric (in the sense of a graphical metric).

Remark 1. Even for (r,q) = (6,3), a proposition similar to Lemma 1 is not valid. Indeed,
take two vertices in the tiling (63) that are diametrically opposite vertices of the same hexagon.
Three hexagons of the tiling (6°) surrounding the same vertex constitute one elementary poly-
cycle, and three hexagons surrounding another vertex constitute another polycycle. These two
elementary (6, 3)-polycycles, which have a common hexagon, constitute together an enveloping
(6,3)-polycycle!! with pg = 5, whose core is not connected (it consists of two vertices).

"For short, everywhere below, we denote an (r,q)-polycycle II(G) by P.

8Actually7 we include only internal faces of the (r, q)-polycyclic realization of the graph G in the polycycle II(G)
and call them the faces of the polycycle II(G) in what follows.

9By the way, this path passes along the edges of the r-gon (see [3; 4; 6, corollary to the lemmal).

1OElementary subpolycycles whose cores are parts of the same connected component of the core of a superpolycycle
may have common faces; on the contrary, elementary summands do not have pairwise common faces (here, we
only speak of elliptic (r,q)-polycycles.

psth (6, 3)-polycycles in this enveloping polycycle are maximal elementary subpolycycles.
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Theorem 1. Let (r,q) = (5,3). Then,
T if ©=0,8,9 (mod 10),
(i) n(z) =< z—1 if x =6,7 (mod 10),
r—2 if z=1,2,3,4,5 (mod10),

except for the following three cases: n(9) = 10, n(10) = 12, and n(11) = 15. The extremal polycycle
is unique for x < 11 (however, this is no longer so for x = 12) and when n(z) = z;

(ii) all possible densities of (5,3)-polycycles, except for the three cases ps = 9,10, 11, form the
segment [0,1]. All rational densities can be realized by finite improper polycycles. All possible
densities of polycycles any of whose faces contains an internal vertex form the segment [%, 1].

Proof. The proof of Theorem 1 is based on Lemma 1, the list of all connected components
of the cores of (5, 3)-polycycles, and the corresponding list of elementary (5, 3)-polycycles given in
Table 1. The connected components of the cores are enumerated as follows. The core of the special
(trivial) polycycle D is empty. The core of the polycycle E; consists of a single vertex. If each
pentagon of an elementary (5, 3)-polycycle has at most three vertices from the core that are arranged
in succession along the perimeter of the pentagon, then the core does not contain pentagons and
has the form of a geodesic (see the elementary (5,3)-polycycles E;, i > 1, By, and Ag) or a propeller
(see the elementary (5, 3)-polycycle C3). If at least one pentagon of the elementary (5, 3)-polycycle
contains three vertices of the core that are arranged along the perimeter not in succession, then
the whole pentagon belongs to the core. Only in the case of one or two pentagons the core can
additionally contain one or two pendant edges (see Az, B3, Co and A4, By, C1). If the core contains
more than two pentagons, then the total number of these pentagons can only be 3, 4, or 6 (see Ag,
Ag, and A;). The completeness of the list of elementary (5, 3)-polycycles is verified.

Table 1 presents all elementary (5,3)-polycycles, i.e., elementary summands of all (5,3)-
polycycles. The vertices of their cores are displayed in bold type. Using Table 1, one can easily
show that any (5,3)-polycycle is obtained by gluing together elementary (5,3)-polycycles along
their open edges, i.e., along the edges both of whose ends have degree 2. Here, we only deal with
the gluings of elementary polycycles such that the core of every elementary polycycle coincides
with a connected component of the core of their union; we treat every elementary polycycle as an
elementary summand (maximal elementary subpolycycle; see Lemma 1). In Table 1, each case is
denoted by a certain letter with a subscript; two numbers indicate the values of the parameters
ps and nyy; for example, a triplet of the form (FEj.s + 2,s) below the figure in Table 1 implies
that the figure presents an elementary (5,3)-polycycle Es; with p5 = s + 2 and nj,y = s. Only
the class E consists of a countable number of elementary polycycles E; with s > 1; among the
figures of Table 1, elementary polycycles F; are indicated only for s < 5. Note that, for the trivial
elementary polycycle, the pentagon D, any of its edges can be identified with an open edge of any
other elementary polycycle, either trivial or nontrivial. If we want the pentagon D to remain an
elementary summand, such an identification can be made for yet another edge of D not adjacent
to the already identified one. The elementary (5,3)-polycycles Ay, Ay, Az, A4, As, and Ag (see
Table 1) correspond each to its own unique (5, 3)-polycycle because neither of them has open edges.
The polycycles Ay, As, A3, A4, B3, and As are the only extremal ones for p; = 11,10,9,8,7, and 6;
their dual polycycles are the only extremal ones for p; = 1,2, 3,4,5, and 6. (The polycycles Ay, As,
As, Ay, and Aj are the only nontrivial polycycles that are isometric subgraphs of the skeleton (53);
they are precisely those five (5, 3)-polycycles that are called inscribed in [10].)

Theorem 1 is proved by the enumeration of all possible gluings of elementary (5, 3)-polycycles
with open edges. For example, for p5s = 0 (mod 10), an extremal polycycle is obtained by gluing
only the copies of the polycycle C1, while, for p; = 9 (mod 10) or ps; = 8 (mod 10), one should
glue together the copies of the polycycle Cy and one or two copies of the polycycle By (always
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Table 1. Elementary (5, 3)-polycycles and their cores

& @ &

11, 15 .10, 12 As. 9, 10
Ay. 8,8 As. 6,5 As. |Z), |Z,|
B:. |N|, |N| B». 9,9 Bs. 7,6

. 10, 10 Cy. 8,7

Cs. 6,4
B». 4,2

D. 1,0 Ei. 3,1
Es. 5,3 Ey. 6,4 Es. 7,5
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at a deadlock). An elementary polycycle E, 5 is extremal for n(z) = z — 2 > 10; however, even
for z = 12, there is another extremal (5, 3)-polycycle that is obtained by gluing the elementary
polycycle Cy together with two copies of the elementary polycycle D along open edges; for x =
13,14, and 15, C1 |J E1, C1 U E9, and Cy | E3 are also extremal. A more detailed enumeration of
gluings shows that all rational numbers from the segment [%, 1] can be realized as densities of finite
polycycles without involving the pentagon D in the gluing. For example, density % is realized by
the proper polycycle Fy, density 1 is realized by the improper polycycle C', and all intermediate
densities are realized by appropriate gluings of the copies of these two polycycles taken in necessary
proportions. In this case, irrational densities are obtained by gluing an infinite number of copies of
the polycycles E; and Cy. Moreover, if we admit copies of the pentagon D in the gluings, then all
densities from the segment [0, %] will also be realized. Theorem 1 is proved.

Remark 2. Ifan (r,q)-polycycle P can be obtained from an (r, ¢)-polycycle P’ by adding one
r-gon, we denote this as P’ — P. Using this notation, one can express all such relations between
elementary (5, 3)-polycycles from Table 1 as follows: E; — FEg1; for s > 1; E5 — C3, A5 — Bs —
02,A4 — A3 — Ag — Al; E5 — 02,A4 — By — AQ,Cl; Ey — B3; EG — BQ; E7 — 01; and
By — Bj.

All (3,3)-, (4,3)-, and (3,4)-polycycles were obtained in [12] (proper) and [2] (improper); in the
case of (r,q) = (3,3), the pairs (p,, nint) are (1,0), (2,0), and (3, 1); in the case of (r,q) = (4,3), the
pairs (pr, ning) are (m, 0) for any m > 1, (|N],0) and'? (|Z|,0), (3,1), (4,2), and (5,4); in the case of
(r,q) = (3,4), the pairs (p,, nin) are (m,0) for any m > 1, (|N|,0) and®3 (|Z],0), (4, 1), (5,1), (6,1),
(6,2), and (7,3). Among these pairs, those with ny,; > 1, except for the pair (p,, nint) = (6, 1), are
realized only by proper polycycles; all improper polycycles, except for the case (p,, nint) = (6,1),
have niyy = 0; i.e., they are outerplanar.

Theorem 2. Let (r,q) = (3,5). Then,

(i) if ¢ = 0,1 (mod18), then n(x) = |5] except that n(18) = 8 and n(19) = 9; if = #
0,1 (mod18), then n(z) = |%52] except that n(z) = [ZEL] for z = 10,12,13, 14,28, 30,31, 33,35
and n(z) = |Z2| for z = 15,16, 17, 34;

(ii) all possible densities of (3,5)-polycycles, except those excluded in (i), form the segment
[0, %] All rational densities are realized by finite improper polycycles;

(iii) for p3 < 19, we have n(z) =0 for 0 < x <4, n(z) =1 for 5 <z <7, n(8) = n(9) = 2,
n(10) = n(11) = 3, n(12) = n(13) = 4, n(14) = 5, n(15) = n(16) = 6, n(17) = 7, n(18) = 8, and
n(19) = 9. All extremal polycycles with ps < 19 are proper and, except for the cases ps = 9,11 (two
polycycles for each ps) and ps = 4,7,13,16 (three polycycles for each ps), unique; any polycycle
complementary to an extremal (proper) one is also extremal.

Proof. To prove Theorem 2, we apply the same strategy as for Theorem 1 except that now enu-
merations are larger (see Table 2 of elementary (3,5)-polycycles and their cores). A new difficulty
consists in the fact that one has to use a special (trivial) elementary polycycle, a triangle d (with
empty core), to glue certain elementary (3, 5)-polycycles. In this case, a polycycle is glued together
with the triangle d along a weakly open edge, i.e., along an edge whose ends have degrees 3 and 4
or 4 and 4. Along a strongly open edge, i.e., along an edge both of whose ends have degree 3, any
elementary polycycle can be glued together with any other elementary polycycle. Again, we only
speak of those gluings of elementary polycycles for which the core of every elementary polycycle
coincides with a connected component of the core of their union; i.e., every elementary polycycle is

12Here we distinguish two cases that are formally denoted by (IN], 0) and (|Z|,0) depending on whether a polycycle
(considered as a chain) is infinite only in one direction or in two opposite directions; if we used a unified formal
notation (Xg,0) or (oc,0), we would have lost this additional information.

133ee the preceding footnote.
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Table 2. Elementary (3, 5)-polycycles and their cores

ar. 19,9 as. 18, 8 as. 17,7

ay. 16, 6 . 15,6 ag. 3|Z|, |Z|
1. 3N, |N] . 18,6 . 15,5
by. 13,4 c1. 16,6 14,5

c3. 12,4 cq. 10, 3

AN
Y R A

es. 14, 4 es. 17,5 es. 20, 6
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Table 3. Minimal nonembeddable (5, 3)- and (3, 5)-polycycles

E4 DUEQUD C3 dUGQUd

an elementary summand of the enveloping polycycle. An outerplanar (3,5)-polycycle consists only
of triangles d, i.e., of trivial elementary summands with empty cores.

The completeness of Table 2 is also proved by a simple enumeration of the cores. The core of
the polycycle d is empty. The core of the polycycle e; consists of a single vertex. If there are at
most two vertices from a core in each triangle, then the core does not contain triangles and has the
form of a geodesic (see e;, i > 1, as well as b; and ag). If there is one triangle in a core, the latter
may additionally have one pendant edge (see ¢4 and b4). If there are two triangles in a core, the
latter may additionally have one or two pendant edges (see cs, bs, and by). If there are more than
two triangles in a core, then their total number may only be 3, 4, 5, 6, 8, or 10 (see a1, a2, as, a4,
as, ¢1, and c2). The completeness of Table 2 is proved.

In Table 2, each elementary (3,5)-polycycle is denoted by a certain letter with a subscript; two
numbers indicate the values of the parameters ps and n;,. Only the class e consists of a countable
number of elementary polycycles e; with s > 1, and a triplet of the form (es. 3s+2, s) below a figure
in Table 2 indicates that the polycycle es; has the parameters ps = 3s + 2 and ny,y = s; Table 2
presents elementary polycycles e; with subscripts s < 6 only. The rest is analogous to the proof of
Theorem 1.

Remark 3. In [7], we considered isometric (or with a certain scale A\) embeddings of (r,q)-
polycycles (regarded as metric spaces of vertices in a graph with the shortest distances between
them) into hypercubes. In particular, in that paper, we pointed out two proper (5, 3)-polycycles
with ps = 6 such that any (5, 3)-polycycle different from (5%) is embeddable (with scale A = 2)
if and only if it does not contain any of these two polycycles as an induced subgraph: F,; and
D U E;UD (see [7, Theorem 2] and Table 3).

The following analogue of this theorem holds for (3, 5)-polycycles.

Theorem 3. Any (3,5)-polycycle different from the edge skeleton of the icosahedron (3°) and
the skeleton of the icosahedron with one vertex removed (3°) — v is embeddable (with scale \ = 2)
if and only if it does not contain, as an induced subgraph, any of the two proper (3,5)-polycycles
with 10 vertices shown in Table 3, namely, c3 and dU ey Ud.

The proof of Theorem 3, based on [15], is given in [16].

Remark 4. Theorem 3 completes the solution of the embeddability problem for all (r,q)-
polycycles. For (r,q) # (5,3),(3,5), only three polycycles are nonembeddable: the cube without
an edge, the octahedron without an edge, and the octahedron with a split vertex. All parabolic
and hyperbolic (r, g)-polycycles are embeddable. Parabolic regular tilings (7?) are embeddable into
a finite-dimensional lattice, and hyperbolic regular tilings (r?) are embeddable into an infinite-
dimensional lattice. Certain (r, q)-polycycles with parabolic parameters (r, q) cannot be embedded
into a finite-dimensional lattice, while, with hyperbolic parameters, they can.

Remark 5. The polycycles in Table 3 are partial but not isometric subgraphs in (5%) and (3°);
among these polycycles, only the elementary polycycles E4 and c3 are induced subgraphs, which are
also shown in Tables 1 and 2. Among the polycycles shown in Tables 1 and 2, only the polycycles
Ay D A5,C3 D FE3 D Ey D E1 DD anda; Das Dby Deg,ez3 Des Deyp D d are isometrically
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embeddable into half-cubes (i.e., are embeddable into hypercubes isometrically with scale A = 2);
here, the symbol D means that “a superpolycycle contains a subpolycycle.” One can easily verify
that any embeddable finite (r, ¢)-polycycle is embeddable into a (% + z)-dimensional cube for even r
and is embeddable with scale A = 2 into a (k+2z)-dimensional cube for odd r; here, k is the perimeter
of the polycycle and z is the number of closed zones (i.e., cycles consisting of opposite edges of faces
that do not contain the outer face). For example, among all embeddable polycycles of Tables 1
and 2, only Ay, a1, and a5 have z > 0; namely, z = 5, z = 3, and z = 1, respectively.

The method described above is based on the fact that, for the elliptic parameters (r,q) = (5, 3)
and (3,5), Lemma 1 and Tables 1 and 2 provide a convenient description of polycycles. However,
this is not the case for nonelliptic (r, q).

Theorem 4. For parabolic and hyperbolic parameters (r,q), there exists a continuum of non-
isomorphic elementary (r,q)-polycycles.

Proof. Consider a right semi-infinite chain of squares that fill a strip between two parallel
rays. Inside the two horizontal sides of each square of the chain, we put 7 — 5 and one decorated
vertices to obtain an r-gon instead of a square. There are two alternatives: either » — 5 decorated
vertices are placed on the upper side and one on the lower side or vice versa, one decorated vertex
is placed on the upper side and » — 5 on the lower. Such a choice is made independently on each
square when we move to the right along this chain. Therefore, there is a continuum of various
(nonisomorphic) chains of this kind. All of them are chains in the tiling (r?) for » > 7 and ¢ > 3,
as well as for r = 5 and g > 4. Tt is also clear that this (r, ¢)-polycycle is the core of an elementary
(r,q)-polycycle consisting of this polycycle supplemented with all r-gons that are incident to it in
the tiling (r%). For r > 7 and ¢ > 4, this elementary polycycle is proper; moreover, the projection
of its polycyclic realization on the tiling (79) is convex in the hyperbolic plane H?.

Now, consider the case of parabolic parameters (r,q), i.e., (r,q) = (6,3),(4,4), and (3,6). In
the square lattice, i.e., in the regular tiling (4*) of the Euclidean plane R?, we construct a chain of
squares semi-infinite in the upper right direction. On each step of this construction, there are two
alternatives for choosing the next square: one can choose an adjacent square either on the right on
the same level or one level higher. It is clear that there is a continuum of various (nonisomorphic)
chains of this kind in the tiling (4*) and each of these chains is the core of a certain elementary
(4,4)-polycycle. Infinite chains of hexagons in the tiling (63) are constructed analogously. As for
the tiling (3%), combining two adjacent triangles in it into a rhomb and transforming the entire
tiling (3%) into a rhombic lattice combinatorially equivalent to the tiling (4*), one can apply the
same line of reasoning as in the case of the square lattice. The cores of the parabolic polycycles
constructed are outerplanar. They can be interpreted as the cores of hyperbolic polycycles (by
increasing the value of the parameter q). Theorem 4 is proved.

In spite of the negative result of Theorem 4, one can easily obtain the following general estimates.

Theorem 5. For any finite (r,q)-polycycle P with a nonempty core such that each r-gon
contains a vertex from the core, the following estimate is valid:

DPr q

lgnint<""
q

Proof. Take an arbitrary polycycle P satisfying the hypotheses of Theorem 5. Since the
number of r-gons that meet at an internal vertex of the polycycle P is equal to ¢ and each r-gon
contains at least one internal vertex of the polycycle P, the number nj,;q counts each r-gon of the
polycycle at least once; hence, p, < njyq. Next, we tile each r-gon by 4-gons by connecting its
center with the midpoints of the sides; the number of 4-gons in each r-gon is equal to r; the number
of 4-gons incident to any internal vertex is equal to q. Then, the number of 4-gons adjacent only
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to internal vertices of the polycycle P is equal to mjytq, while the total number of 4-gons is equal
to rp,. Hence, nintq < rp,. Theorem 5 is proved.

Both estimates in Theorem 5 are, generally speaking, sharp. For example, the lower estimate is
attained on a g¢-star of r-gons with the center at any internal vertex of an (r, g¢)-polycycle. To show
the sharpness of the upper estimate, we consider a square with the side m + 1. Let us partition it
into (m+1)? unit squares. We obtain an (r, g)-polycycle with parameters » = ¢ = 4 that has exactly
m? internal vertices. For a sequence of such (4,4)-polycycles, we obtain the following relation in
the limit as m — oo:

Nint m?
pr (m+1)2

— 1;

hence, the upper estimate in Theorem 5 is also sharp.

Theorem 5 shows that miy(p,) has a linear growth order in p,; however, we leave open the
question of the exact parameters of the growth order of the function njus.

We suppose that, for any nonelliptic parameters (7, q), there are proper polycycles among ex-
tremal (7, ¢)-polycycles; this is true for any elliptic parameters: all known extremal (7, g)-helicenes P
with elliptic parameters (r, q) have p,(P) > p,(r?).

Remark 6. Extremal polycycles represent the opposite extreme case of outerplanar polycy-
cles. For given r, ¢, and p,, an extremal polycycle maximizes the number of internal vertices mjnt
and the number of internal (i.e., those not belonging to the boundary) edges ejy; it also minimizes
the number of boundary edges (perimeter) k, the total number of edges e, and the total number
of vertices n. Indeed, the Euler formula (nin; + k) — (eint + k) + (pr + 1) = 2 and the equality
rp, = 2eint + k imply the relations
k N pr(r —2)

Nint = €int — Pr + 1=——-

5 5 +1l=—-e+p(r—1)+1=-n+p.(r—2)+2,

which confirm the aforesaid.

The extremal animals mentioned in [11] are, in our terms, proper (4,4)-, (6,3)-, and (3, 6)-
polycycles with the minimum number of edges e and, hence, with the maximum number njy.

In [11], it was proved that such polycycles have e = 2ps + [2,/P4 |, € = 3ps + [/12ps — 3 |, and

e = p3 + {% v6p:‘-l edges, respectively, and that, among them, there are always polycycles that

grow like a spiral.

NONEXTENDIBLE POLYCYCLES

Consider another natural concept of maximality of polycycles. An (r,q)-polycycle is called
nonextendible if it is not a partial subgraph of any other (r, q)-polycycle, i.e., if an addition of any
new r-gon removes it from the class of (r, g)-polycycles. It is clear that a polycycle defined by the
skeleton of any tiling (%) is nonextendible, while all other nonextendible polycycles are helicenes.
It is also clear that any 3-connected (7, 3)-polycycle is nonextendible.

It turned out that Tables 1 and 2 also facilitate the determination of nonextendible (r,q)-
polycycles for spherical (r, q).

Theorem 6. All nonextendible polycycles different from the skeleton (r?) are given by four
improper (r,q)-polycycles (two finite and two infinite ones) depicted in Table 4 and a continuum
of infinite improper (r,q)-polycycles for any pair (r,q) # (3,3),(3,4), (4, 3).

Proof. The case (r,q) = (3,3),(3,4), (4, 3) follows immediately from the list of these polycycles
given in [2]. It is clear that doubly-infinite and nonperiodic (at least in one direction) sequences
of glued copies of the elementary polycycles bs and eg (from Table 2) yield a continuum of infinite
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Table 4. Examples of nonextendible elliptic (r, g)-polycycles

(r,q) = (3,4) (r,q) = (3,5) (r,q) = (4,3) (r,q) = (3,4)

nonextendible (3, 5)-polycycles. The same is true for the gluings of copies of the elementary poly-
cycle Cs (from Table 1) and Cj (obtained from Cy by rotation through =), which yield a continuum
of infinite nonextendible (5, 3)-polycycles.

In nonelliptic cases, i.e., for (r,q) # (3,3),(3,4),(3,5), (4, 3),(5,3), we consider infinite nonex-
tendible polycycles obtained from (r?) by rejecting certain nonadjacent r-gons followed by taking
a universal covering. If we reject a countable number of r-gons using nonperiodic sequences of
rejected r-gons, then (due to an ambiguous choice of the rejected r-gons at each step, similar
to the choice of squares of the infinite chain in the tiling (4%) in the proof of Theorem 4), we
obtain a continuum of different polycycles. It is clear that, when rejecting different (noncongruent)
sequences of 7-gons, the universal coverings prove to be different (see Theorem 2 from [3] and [6]
on a one-to-one cellular mapping, which is precisely up to congruence).

For the parameters (r,q) = (3,5), we succeeded in proving that there do not exist nonextendible
finite polycycles except for one,'* which is depicted in the second figure in Table 4 (where the
icosahedron and octahedron with a split vertex are presented). For (r,q) = (5,3), this result
follows from the data of Table 1, Lemma 1, and Remark 1.

It remains to prove the nonexistence of finite nonextendible polycycles for nonelliptic param-
eters (r,q). Here, it is convenient to return to the old, although more cumbersome, notations,
which were mentioned at the beginning of the paper. In [3-6], each (r, ¢)-polycycle II(G) and the
standard tiling (r?) were put in one-to-one correspondence with an abstract two-dimensional poly-
hedron P(G) and a standard polyhedron K(r?), respectively,'® that are combinatorially isomorphic
to the above polycycle and tiling and are composed of isometric regular Euclidean r-gons, and the
existence of a continuous locally isometric cellular mapping f: P(G) — K(r?) was proved.

Since the angle of a regular r-gon is equal to (r — 2)7/r and the number of regular r-gons that
meet at an internal vertex of the polyhedron P(G) is equal to ¢, the curvature of any internal
vertex of the polyhedron P(G) is equal to

r—2
r

w =21 — qr.

Hence, the total curvature of the polyhedron P(G) is equal to

2 _
(r+4q) rq_
r

Q= nine

If nine = 0, i.e., an (7, q)-polycycle II(G) is outerplanar, then the curvature  of the corresponding
polyhedron P(G) is equal to zero for any parameters (r,q). If ny; > 0, then the curvature Q is

147he absence of other nonextendible (3,5)-polycycles is proved by a thorough enumeration; however, we do not
present it here; we are trying to make this enumeration shorter.

I5Here, it is pertinent to recall the following relations (see [3-5]): II(G) = P(QG) for any parameters (r,q); K(r?) =
(r?) for elliptic and hyperbolic parameters and K(r?) = (r?) for parabolic parameters (7, ¢); and P(r?) = K(r?)
for parabolic and hyperbolic parameters (r,q), but P(r?) = K(r?) — F for elliptic parameters (the interior of the
face F is removed from the surface of the Platon body; a sphere cannot be completely embedded into a plane).
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positive, zero, or negative, depending on whether the parameters (r,q) are elliptic, parabolic, or
hyperbolic, respectively.

Any internal edge of a polyhedron P(G) belongs to exactly two r-gons, while any boundary
edge belongs to only one r-gon. Therefore, the following equality holds:

TPy = 2€int + k,

where, again, ej,; is the number of internal edges of the polyhedron P(G) and k is the number
of boundary edges. On the other hand, since the number of boundary vertices and the number
of boundary edges of the polyhedron P(G) are equal to the same number k (the perimeter of the
polyhedron), these two numbers in the Euler formula cancel out, and a condensed version of this
formula reads as

Nint — €int + Pr = 1.
From the last two formulas, we obtain
(r —2)pr = 2nins + (k — 2).

Now, let us calculate the sum of plane angles of the polyhedron P(G); we do this in two different
ways: (i) we first calculate the sum of angles in separate polygons and then sum up over all polygons
and (ii) we first calculate the sum of angles at separate vertices and then sum up over all vertices,
both boundary and internal. As a result, we obtain the equality

k
r— 2
pr(r —2)m = @i + ning
i=1

— 47,
r

where ; denotes the total angle at the ith boundary vertex of the polyhedron P(G). Combining

this formula with the preceding one yields

r—2

Nint (27T - (17T> = sz;%' — (k= 2)m. (1)

The geometrical meaning of this equality can be formulated as the following discrete analogue of
the well-known Gauss—-Bonnet theorem (see [13]).

The excess of the sum of angles of a geodesic k-gon (as compared with the sum of angles of

a plane k-gon) is equal to its curvature; i.e., if @1,...,¢r are the angles of a geodesic k-gon that
is the boundary of the polyhedron P(G) and wy,...,wy,, are the curvatures of internal vertices of
the polyhedron P(G), then

k Ning

dopi—(k=2)m =3 w;

i—1 j=1
In our case, w1 = ... = wp, , = w, where w =27 — (r — 2)qm/r.

Let k; be the number of vertices of degree j, where j = 2,3,...,¢g—1, g, that are situated on the
boundary of the polyhedron P(G) and k be the total number of vertices of the boundary polygon
of the polyhedron P(G), i.e., its perimeter. Then,

k=hy+hks+...+ke 14k 2)

Let us calculate the sum 2% ; ¢; — (k — 2)7 on the right-hand side of equality (1) for a finite
polyhedron P(G) considered as a geodesic k-gon. Since

r— 2
r

T,

k
Z%:{1-k2+2-k3+...+(q—2)-kq71+(q—1)'kq}
=1
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by formula (2) we obtain the equality

k r—29 r—2
SRS (Rt PR PR I PR
i=1 " "

_|_((q_Q).$—l>kq_1—|—<(q—1)-$—l>kq}ﬂ'+2ﬂ'. (3)

For nonelliptic pairs (7, q), the regular tilings (r?) are not unique infinite nonextendible (r, q)-
polycycles; there exists a continuum of other (7, g)-polycycles such that every vertex has degree q.
However, this is not so in the finite case.

Consider a particular case of a finite polyhedron P(G) in which each vertex has degree ¢. In
this case, 2e = gn, where n is the total number of vertices and e is the total number of edges of
P(G); in view of the equality 2e = rp, + k, we can rewrite the Euler formulan — e+ p, =1 as

2(g+r) —qr k

— =1+ -.
" 2r +7‘

Hence, 2(q + r) — qr > 0; i.e., the parameters (r,q) are elliptic. For any of the five elliptic pairs
(r,q) = (3,3),(3,4),(3,5),(4,3),(5,3), we directly verify that the equality £ = r holds and that the
polyhedron P(G) is in fact the surface of a Platon body without one face.

Now, let a finite polycycle II(G) be nonextendible but different from the skeleton of a regular
tiling (r?). In this case, there certainly exist vertices on the boundary of the polyhedron P(G)
whose degrees are less than gq.

Lemma 2. If a finite polyhedron P(G) has a vertex whose degree is less than q, then the total
number of these vertices is at least two.

Proof. We will prove Lemma 2 by contradiction. Suppose that a finite polyhedron P(G) has
only one vertex whose degree is less than ¢q. Denote this vertex by A;. All the other boundary
vertices As, As, ..., Ag (the numbering corresponds to moving along the boundary) have degree q.
Choose a flag @ in the polyhedron P(G) that consists of the vertex A;, edge A;As, and r-gon
incident to them and construct a continuous locally isometric cellular mapping f: P(G) — K(r?)
(see [3, 5, 6]). The mapping f is uniquely defined by the flag ® in the polyhedron P(G) and its
image f(®) in the polyhedron K(r?).

Let us take the restriction of this mapping onto a two-dimensional chain consisting of r-gons of
the polyhedron P(G) incident to its boundary and try to find out what is the image of this chain
under the mapping f.

Consider a closed edge path A} AsA;s... A A whose beginning A} and end Aj are situated
at the same vertex A;. Moving along this path, we enumerate!® all r-gons of P(G) incident to
it; we start the enumeration from the flag ®. Thus, we obtain a sequence of r-gons in which all
neighboring r-gons are adjacent along a side. The set of all r-gons of this sequence constitutes
a closed chain. The image of this chain under the mapping f must also be closed.

Since the edge path A]AsA;s... AxAY is closed, its image under the mapping f is also closed.
Hence, the equality!” f(AY) = f(A}) holds, and, henceforth, we will split neither the vertex A; nor
its image f(A1).

Now, we pass on to the analysis of the mappings of stars. All r-gons of the polyhedron P(G)
incident to a vertex A constitute a star; we denote it by StA. Let us show that the following
relations hold:

Stf(Aj) :FUf(StAj), j=2,3,...,k

161t is convenient first to cut off the vertices of the polyhedron P(G) and then enumerate all r-gons encountered
while moving along the smoothed boundary in the sequential order.
17 This equality implies that the perimeter k satisfies the relation &k = mr, m € N.
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where F is a fixed r-gon of the polyhedron K(r?), which is the same for any j = 2,3,..., k. Indeed,
f maps the flag ® to its image f(®). Denote by F the r-gon from the polyhedron K(r?) that is
adjacent to f(®) along the edge f(A1As). Since the number of r-gons of the star St A, in P(G) is
equal to ¢ — 1 and the number of r-gons of the star St f(Ay) in K(r9?) is equal to g, the r-gon F has
one more edge f(AzAs) on its boundary; hence, we obtain the equality Stf(A2) = F U f(StAs2).
For the same reason, the r-gon F has the edge f(A3A4) on its boundary, whence we obtain the
equality Stf(As) = F U f(StA3), and so on. Thus, the relations presented are proved.

Moving along the chain of r-gons taken from the stars St As, St As, ..., St A, starting from the
r-gon with edge As A; and ending at the r-gon with edge Ay A1, we write out their images under
the mapping f. The image of the r-gon with the edge A3 A; lies outside the r-gon F and is adjacent
to it along the edge f(A2A;). The image of the r-gon with the edge Ay A; lies outside the r-gon F
and is adjacent to it along the edge f(AxA1).

If the degree of the vertex A; is no less than three, then at least two r-gons from the polyhedron
P(G) are incident to the vertex A;. For the two of these r-gons that are adjacent to the boundary
along the edges A;As and A; Ay, we have already obtained two images above; both of them lie
outside the r-gon F: one is incident to the edge f(AjAj), while the other, to the edge f(A1Ay).
These two images are different indeed because the total number of r-gons of the polyhedron K(r?)
that are incident to the vertex f(Aj) is no less than three (the degree ¢ of every vertex of K(r?)
is greater than or equal to 3). Since the degree of the vertex A; is less than ¢, these r-gons
cannot both belong to the image of the star StA; under the mapping f; in the present case,
Stf(A1) # FU f(StA;). We obtained a contradiction.

If the degree of the vertex A; equals two, then only one r-gon from the polyhedron P(G) is
incident to the vertex Aj;, which is adjacent to the boundary along the edges A1 As and A A
simultaneously. This is the flag ®. As before, we have already obtained two images of the flag ®;
both of them lie outside the r-gon F: one is adjacent to F along the edge f(A;As), while the other,
along the edge f(A1Aj). These two images are different indeed because the total number of r-gons
of the polyhedron K(r?) that meet at the vertex f(Aj) is no less than three (¢ > 3). However,
there must be only one image of the same r-gon (in this case, the flag ®) under the mapping f.
We obtained a contradiction again.

Hence, the situation when only one vertex of the polyhedron P(G) has degree less than ¢ is
impossible; there must be at least two such vertices. Lemma 2 is proved.

End of the proof of Theorem 6. Consider an arbitrary finite nonextendible (r, g)-polycycle
II(G) and prove that the corresponding polyhedron P(G) always has positive curvature, so that
the parameters (r,q) are elliptic.

We will prove this by contradiction. Suppose that the parameters (r,q) are parabolic or hy-
perbolic, i.e., the inequality gr — 2(q + r) > 0 holds. Then, the following estimate is valid for the
coefficient of kg in (3): (¢ —1)=2 —1= %(qm +2>2

On the boundary of the finite nonextendible polycycle II(G), which is different from the skele-
ton of a Platonic body, there must certainly exist vertices of degree less than ¢ in addition to
vertices of degree ¢; by Lemma 2, the number of such vertices must be no less than two, as
the number of vertices of the corresponding polyhedron P(G). The total number of vertices
on the boundary must be greater than r (see the corollary to the lemma in [3]). Any two ver-
tices of degree less than ¢ must be separated by at least r — 1 vertices of degree g; otherwise,
our polycycle TI(G) would be extendible.!® Tt follows from the aforesaid and condition r > 3

181f, between two vertices with degrees less than ¢ on the boundary of the polycycle II(G), there are only r — s
vertices of degree g, where s > 2, then these vertices are connected by a boundary edge chain of length r — s+ 1;
this chain can be closed to give a new r-gon by adding a new chain of length s — 1, where s — 1 > 1, to the old
chain on the outer side of the polycycle II(G). The degree of these two vertices remains no greater than g¢; thus,
the polycycle is extended.
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that
kg>(r—1) Zk >22k
j=2

Therefore, by (3), the quantity Zle i — (k — 2)7 calculated for the polyhedron P(G) obeys the
estimate

9 2 9 2
E:% —27r>{<1 r —1+2-—>k2+<2-r —1+2-—>k3+...
r T r r

+((q_2).$—1+2-%>kq1}7r+27r. (4)

The coefficient of k; on the right-hand side of inequality (4) increases as the index j increases.
Since the least coefficient (that of ko) is positive, all the other coefficients of k; are also positive.
The values of k; themselves are nonnegative (and there even exists one positive k; because there
are vertices on the boundary of P(G) whose degree is less than ¢). Hence,

Z(pz k—2)7 > 2.

The positivity of the right-hand side of inequality (4) implies the positivity of the left-hand side.
Thus, in view of (1), the curvature Q of the geodesic k-gon is positive. The resulting inequality
2(r +q) — qr > 0 contradicts the assumption made. Hence, a finite nonextendible polycycle cannot
have parabolic or hyperbolic parameters (r, q); these parameters are elliptic. Theorem 6 is proved.

Note that the number of (r, g)-polycycles such that the degree of the mapping of an internal
point of any face under a continuous locally isometric cellular mapping f: P(G) — K(r?) is equal
to 1 and that are extendible (with the loss of this property)

is equal to 0 for the parameters (r,q) = (3,3), (3,4);

is equal to 1 for the parameters (r,q) = (4,3) (this is P, x Ps);

is finite for the parameters (r,q) = (5, 3),(3,5); and

is infinite for the remaining parameters (7, q).

The finiteness of this number for the parameters (r,q) = (5,3) and (3, 5) follows from the fact that
the number of 5-gons and 3-gons must be no greater than 12 and 20, respectively.

Note also that one can obtain interesting examples of infinite nonextendible (r, ¢)-polycycles
as universal coverings for the complement to the covering of all vertices of the regular tiling (r?)
by nonadjacent r-gons (if such a covering exists; the cube, octahedron, and icosahedron have such
coverings, while the tetrahedron and dodecahedron do not).

EXAMPLES OF ISOHEDRAL POLYCYCLES

Following [8], we call a polycycle P isogonal or isohedral if its automorphism group (denoted by
Aut P) is transitive on the vertices or faces, respectively. In [7], we gave theorems describing such
(r,q)-polycycles. Tables 5-8 below display all families of such polycycles that we have obtained.

Table 5 presents all 19 isohedral (r, q)-polycycles with elliptic parameters (r,q). Among them,
only 3-, 4-, and 5-gons (triangles in the three cases ¢ = 3,4,5) and two infinite (r,q)-polycycles
(one of them in the two cases ¢ = 4,5) are isogonal.!? There is only one cactus among infinite
polycycles; all the other are ribbons.

19Table 5 does not contain the following elliptic isohedra: an exceptional (r,q)-polycycle with parameters r = 2
and ¢ = 3, because condition (i) (see the definition of polycycles in the Introduction) requires that » > 3, and
special (r,q)-polycycles with parameters r > 2 and ¢ = 2, because condition (ii) requires that ¢ > 3 (in fact,
these isohedra are not polycycles but monocycles since they do not have any strictly proper subpolycycles).
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Table 5. All 19 isohedral elliptic (r, g)-polycycles

(ra) | (33) (3,4) (4,3) (3,5) (5,3)

A O
m <D | <D > | <D
| A NE o

Aut P

pma2 ~ T(2,2, o) M )M

T*(2,3,00) ~ SL(2,7) \

Table 6. Examples of families of isohedral (r, q)-polycycles with a ribbon group of symmetry

/

4.3 4+42a,3 4+a,4 5+a,3 3+a,4 3+a,b 4+a+b,3 44+a+b,3 4+a+b,3
a>0 a>0 a>0 a>0 a>0 a>b>0 a>b>0 a>b>0
pmm?2 pmm?2 pmm?2 pma2 pma2 pma2 pma2 pma2 pmll
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Table 7. Examples of families of isohedral (r, q)-cacti

6+a+b,q. a>b>0

T(2,q,00)
I~
44a,2k. a > 0,k >3 6+a, 3. a>0 5+a,4. a>0
T*(2,k,00) T(2,3,00) T*(2,4,0)
\ ; AN g ; N\
5+2a,q. a >0 5+a+b,q. a>b>0 5+a+b,q. a>b>0
T*(2,q, ) T(2,q,) 3 x T* (00, 00, 00)

Table 8. Examples of isogonal (but not isohedral) (r, q)-polycycles

} N
(r,q) = (3,5) (r,q) = (4,4)
T(2,3,00) T*(2,4, )

~—
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Table 6 presents, among nine figures, eight families of decorations (on the edge marked by
a single dot, there are a decorated vertices, and, on the edge marked by two dots, there are b
decorated vertices) of the (4, 3)-polycycle P = P5 x Py (the product of a segment and an edge line)
with ribbon groups of symmetry. Only the undecorated leftmost and the middle polycycles are
isogonal for a = 0.

Table 7 presents all families of nonribbon isohedral polycycles (namely, nine families of cacti)
together with their parameters (r,q) and the automorphism groups Aut P. There is only one
isogonal case among the polycycles of Table 7, the left polycycle in the first row for a = 0.

The automorphism group of the rightmost polycycle in the bottom row is in one-to-one cor-
respondence with the group 7'(2,3,00) but is different from it: each central inversion is replaced
with a reflection in a line. This is also a subgroup of index 2 of the group 7%(2, 3, c0); however, it
is isomorphic to the product 3 x T*(00, 00, 00). It turned out that, except for this case, all known
isohedral polycycles have triangular groups T'(I, m,n) or T*(l,m,n) as Aut P.

Table 8 presents two more cacti: a (3,5)-polycycle representing a universal covering of an
icosahedron from which four pairwise disjoint faces are removed and a (4, 4)-polycycle representing
a universal covering of a square lattice from which a square sublattice of index 4 is removed. These
polycycles are isogonal but not isohedral; they have two orbits of faces with respect to the group
Aut P: the faces of one orbit have edges on the boundary of the polycycle P, while the faces of
another orbit have no edges on the boundary of the polycycle P; except for these two, we do not
know any other such polycycles.?°

Note that the first polycycle in Table 7 for k¥ = 2 degenerates into a ribbon (see the second
polycycle in Table 6), and the fourth polycycle in Table 7 for & = 2 also degenerates into a ribbon
(see the third polycycle in Table 6). All the other polycycles in Table 6, or, more precisely, their
representatives, are given in Table 5: the first; the fourth, fifth, and sixth for a = 0; and the
seventh, eighth, and ninth for ¢ = 1 and b = 0. The seventh polycycle from Table 7 for a = 0
and g = 3 is also presented in Table 5 (see the intersection of the column (r,¢) = (5,3) and row
Aut P =T*(2,3,0)).

Recall that T*(l,m,n) denotes the Coxeter triangular group whose fundamental triangle has
angles 7, =, and T, while T(l,m,n) denotes its subgroup (of index 2) of motions of the first
kind, i.e., orientation-preserving motions. For ribbon groups, there are following relations between
groups: pmm2 = T%(2,2,00), T(2,2,00) = pl12 =~ pma2 =~ pmll % plml. Recall also that
T(2,3,00) ~ PSL(2,7) (a modular group) and T*(2,3,00) ~ SL(2,7Z).
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