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Abstract

Call bifaced any k-valent polyhedron, whose faces are pa a-gons and pb b-gons only, where
36a¡b, 0¡pa, 06pb. We consider the case b62k=(k − 2) covering applications; so either
k = 36a¡b66, or (k; a; b; pa) = (4; 3; 4; 8). Call such a polyhedron aRi (resp., bRj) if each of
its a-gonal (b-gonal) faces is adjacent to exactly i a-gonal (resp., j b-gonal) faces. The preferable
(i.e., with isolated pentagons) fullerenes are the case aR0 for (k; a; b) = (3; 5; 6). We classify all
a- or b-face-regular bifaced polyhedra, except aR0 for (k; a; b) = (3; 4; 6); (3; 5; 6); (4; 3; 4) and
aR1 for (k; a; b) = (3; 5; 6); (4; 3; 4). For example, we list all 13,6,4,10,26 polyhedra bRj for all
9ve possible cases: k= 4; k= 3; b¡ 6; k= 3; b= 6; a= 3; 4; 5. c© 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Denote by (k; a; b;pa; pb) and call bifaced any k-valent polyhedron whose faces are
only pa a-gons and pb b-gons with 36a¡b and 0¡pa, 06pb.

Any polyhedron (k; a; b;pa; pb) with n vertices has 1
2kn = 1

2 (apa + bpb) edges and
satis9es the Euler relation n− 1

2kn+ (pa + pb) = 2, i.e.,

pa(2k − a(k − 2)) + pb(2k − b(k − 2)) = 4k: (1)

Note, that if a¿2k=(k − 2), then b¿ 2k=(k − 2), and the left-hand side of the above
equality is less than zero. Hence a¡ 2k=(k − 2) = 2 + 4=(k − 2) and (3,3), (3,4),
(3,5), (4,3), (5,3) are only possible (k; a). We consider only the case when, moreover,
b62k=(k − 2); it covers bifaced polyhedra mentioned in chemical applications. It is
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easy to see, that all such possible bifaced polyhedra belong to one of the following
three classes:

(A) If k = 36a¡b65, then (1) takes the form pa(6 − a) + pb(6 − b) = 12 and,
for pb¿ 0, the class consists only of the following 6 simple polyhedra (all but
no. 2 are duals of all 5 non-Platonic convex deltahedra):
1. Prism3 for (a; b) = (3; 4) with p3 = 2, p4 = 3, n= 6;
2. the DFurer octahedron (i.e., the cube truncated in 2 opposite vertices) for

(a; b) = (3; 5) with p3 = 2, p5 = 6, n= 12;
and 4 polyhedra for (a; b) = (4; 5):

3. dual of 2-capped APrism4 with p4 = 2, p5 = 8, n= 16;
4. dual of 3-augmented Prism3 with p4 = 3, p5 = 6, n= 14;
5. dual of bidisphenoid with p4 = 4, p5 = 4, n= 12;
6. Prism5 with p4 = 5, p5 = 2, n= 10.

(B) If k=36a¡b=6, then (1) takes the form pa(6−a)=12 and there are 3 in9nite
families an: 3n, 4n, 5n with (a; pa) = (3; 4), (4,6), (5,12), respectively, and with
the unbounded number p6 of hexagons. (Recall that n is the number of vertices
of the corresponding polyhedron).

(C) If k = 4, then 36a¡b62k=(k − 2) = 4 implies a = 3, b = 4 and (1) takes the
form pa = 8, i.e., there is only one in9nite family (3; 4)n with (a; b; pa) = (3; 4; 8)
and unbounded p4.

The minimal polyhedra of the families 3n, 4n, 5n and (3; 4)n are polyhedra 34, 48,
520 and (3; 4)6 with pb = 0, when n = apa=k. Clearly, they are Platonic polyhedra:
tetrahedron, cube, dodecahedron and octahedron, respectively.

GrFunbaum (1967) gives that other 3n, 4n, 5n and (3; 4)n exist if and only if
126 n≡ 0 (mod 4), 126n ≡ 0 (mod 2), 246n ≡ 0 (mod 2) and 86n, respectively.
The equality kn= apa + bpb implies that the number n of vertices is equal to

n(3n) = 4 + 2p6; n(4n) = 8 + 2p6; n(5n) = 20 + 2p6 and n((3; 4)n) = 6 + p4: (2)

Polyhedra 5n are fullerenes well known in Chemistry (see, for example, Goldberg,
1935; Fowler and Manolopoulos, 1995); polyhedra 4n are mentioned in Gao and Her-
don (1993). In Deza et al. (1998), Deza and Grishukhin (1997, 1999b), we consider
isometric (up to scale 2) embedding of skeletons of some bifaced polyhedra into the
vertex-set of hypercubes. It turns out that all known fullerenes such that it or its dual is
embeddable are face-regular in the sense considered below. In fact, 520=20:1, 526=26:1,
544 = 44:73, 580 = 80:7 and duals of 20:1, 28:2, 36:15, 560(Ih) are embeddable into a
half m-cube for m = 10; 12; 16; 22 and 6; 7; 8; 10; respectively. (The notations n:k of a
5n are taken from Fowler and Manolopoulos, 1995). Moreover, all known (see Deza
and Grishukhin, 1999b) bifaced polyhedra such that it or its dual is embeddable turn
out to be face-regular: # # 1; 2; 5; 6 and duals of # # 1; 2 in case (A); 4 polyhedra 4n
(n= 12; 24; 32; 32), 5 dual 3n (n= 12; 16; 16; 28; 36); all t-elongated octahedra and their
duals, in addition to 6 others (3; 4)n (n= 8; 9; 10; 16; 16; 24) and to the dual cuboctahe-
dron embeddable into H4.
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The graphs of all polyhedra of classes (A)–(C) and their duals (except undecided
5n and dual (3; 4)n) have a Hamiltonian circuit; this follows from the results surveyed
in Section 5:3 of Bayer and Lee (1993).

Here we want to identify aRi and bRj bifaced polyhedra. We denote as aRi (resp.
bRj) the fact that each a-face (b-face) is edge-adjacent to exactly i a-faces (resp., j
b-faces). Sometimes, it is convenient to distinguish aRi and bRj bifaced polyhedra by
graphs Ga and Gb of the edge-adjacency of a- and b-faces, respectively. These graphs
have pa and pb vertices, respectively. Face-regular bifaced polyhedra are those having
regular graphs either Ga or Gb. (This combinatorial notion has nothing to do with the
aIne notion of regular-faced polyhedra.)

A motivation for this work comes from fullerenes studies; see, for example, Fowler
and Manolopoulos (1995) (pentagonal and hexagonal indices and their connection to
the steric strain). In fact, these indices give the number of vertices with degree 0; : : : ; 5
and 0; : : : ; 6 for graphs Ga and Gb of fullerenes; they where introduced in Raghvachari
(1992) as an attempt to measure the steric strain of isomers of 584.

See GrFunbaum (1967) for terms used here for polyhedra. We identify a polyhedron
with the graph of its skeleton. According to the famous Steinitz Theorem, a graph
is the skeleton of a (three-dimensional) polyhedron if and only if it is planar and
3-connected. For a simple polyhedron P, we denote by chamP and call chamfered P
the polyhedron obtained by putting prisms on all faces of P and deleting original edges
(see Deza et al., 1998; Deza and Grishukhin, 1999b for more details).

For t¿1, denote by 2-Prismt
4 the t-elongated octahedron, i.e., the column of t cubes,

capped in 2 most opposite faces. It is (3; 4)4t+6, and besides it is 3R2 in our terms.
Similarly, for t¿1, denote by (APrismt+1

3 )∗ the t-hex-elongated cube, i.e., the cube
with t triples of hexagons inserted as belts between 2 triples of squares incident to
2 opposite vertices (in other words, the dual of the column of t + 1 octahedra �3 =
APrism3). It is tetrahedral 46t+8, which is 4R2.

Finally, for t¿1, denote by (2-APrismt+1
6 )∗ the t-hex-elongated 524, i.e., the dual of

the column of t + 1 APrism6’s capped on 2 opposite 6-faces. It is 512t+24 and is 5R2.
We denote by Kn, Cn and Pn the complete graph, the circuit (cycle) and the path

all on n vertices.

2. Face-regular maps with digons

In the Introduction we supposed that we consider only polyhedra with non-degenerate
a- and b-faces with b¿a¿3. The 1-skeletons of these polyhedra are planar regular
graphs without parallel edges. But if a plane graph has parallel edges, then some pairs
of parallel edges form 2-faces or digons. In this section, we consider planar regular
graphs with 2- and b-faces, that are 1-skeletons of degenerated bifaced polyhedra.

The equality (1) for a= 2 takes the form

4pa + pb(k − 2)
(

2k
k − 2

− b
)

= 4k; (3)



178 M. Deza, V. Grishukhin / Journal of Statistical Planning and Inference 95 (2001) 175–195

where 36b62k=(k−2) and k¿3. Note that if b=2k=(k−2), then there is no restriction
on the number pb of b-faces.

Consider at 9rst the cases when b¡ 2k=(k − 2), strictly. Then, for a 9xed value of
the pair (k; b), there is a 9nite number of feasible values of parameters pa and pb
satisfying (3). In the table below, we give feasible parameters pa,pb and the number
v = (apa + bpb)=k of vertices of the corresponding graphs. Each column of the table
corresponds to a graph.

• The 9rst row of the table contains the order numbers of the graphs.
• The graphs no. 1, 4, 8 and 10 having pa = 1 digon cannot be constructed.
• The graphs no. 2, 6 and 9 are the graphs K4, the octahedron and C4, where the

edges of a perfect matching (i.e. of a set of mutually non-adjacent edges covering
all vertices) are each changed by a digon.

• The graph no. 3 is K3, where each edge is changed by a digon.
• The graph no. 7 is K4, where (two) edges of a perfect matching are each changed

by a bundle of two digons.

The graph no. 11 is obtained from K4 by setting digons on edges of a perfect
matching. (The notion setting is explained below in this section.)

No: 1 2 3 4 5 6 7 8 9 10 11
k 4 4 4 5 5 5 5 3 3 3 3
b 3 3 3 3 3 3 3 4 4 5 5
pa 1 2 3 1 2 3 4 1 2 1 2
pb 6 4 2 16 12 8 4 4 2 8 4
v 5 4 3 10 8 6 4 6 4 14 8
aRi 0 0 0 0 1 0 0
bRj 2 0 — — 2 1 3

If b = 2k=(k − 2), then there are 3 in9nite families of graphs, that we denote as
2n, (2; 3)n and (2; 4)n, where n is the number of vertices of the graphs. In fact, for
k = 3; 4 and 6, the ratio 2k=(k − 2) takes integral values 6,4 and 3, respectively. Hence
when the pair (k; b) is one of the three pairs (3,6), (4,4) and (6,3), we obtain the
families of maps 2n, (2; 4)n and (2; 3)n, respectively. The number p2 of digons in a
graph of each family is equal to k, the valency of the graph. The number of vertices of
a graph of each family is equal to v= 2(1 +pb=(k − 2)). The smallest graphs of these
families (i.e., the graphs with minimal number 2 of vertices) are bundles of k parallel
edges.

There is the following sequence of graphs of the family (2; 3)n with n ≡ 2 (mod 4).
The six digons of such a graph of type (2; 3)n are partitioned into two groups of
bundles of 3 digons each. We set two new vertices on edges of the middle digons
of each group and connect them by 3 parallel edges. We obtain a graph of type
(2; 3)n+4.
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Similarly, we obtain the following two sequences of the graphs of type (2; 4)n as
follows:

Let m¿2 be even, and G(m) be the following graph on m2 vertices (i; j), 16i; j6m.
If 26i; j6m−1, then the vertex (i; j) is adjacent to the 4 vertices (i±1; j), (i; j±1).
The vertex (1; j) for 26j6m − 1 is adjacent to the vertices (1; j ± 1), (2; j) and
(1; m+ 1− j). The vertex (m; j) for 26j6m− 1 is adjacent to the vertices (m; j± 1),
(m − 1; j) and (m;m + 1 − j). Similar adjacencies have the vertices with j = 1 or m
and 26i6m− 1. The vertex (1; 1) is adjacent to the vertices (2; 1), (1; 2), (1; m) and
(m; 1). The vertex (m;m) is adjacent to the vertices (m − 1; m), (m;m − 1), (1; m),
(m; 1). It is easy to see that G(m) is a graph of type (2; 4)n for n= m2.

The graphs R(k), k¿0, of the second sequence are constructed iteratively from
R(k−1). R(0) is the bundle of 4 digons (=4 parallel edges). The graph R(k) contains
a ring Rk containing the 4 digons and 8k squares. For k ¿ 0, the digons and squares lie
between two circuits C8k such that each pair of digons is separated by 2k squares. Call
edges of Rk connected vertices of distinct circuits C8k spikes. R(k) is obtained from
R(k − 1) as follows. We set two new vertices on each spike. Connect new opposite
vertices of each square and digon by new edges. Then each square is partitioned on
3 squares, and each digon is partitioned into 2 triangles separated by a square. Now,
in each digon, we set on each of the two edges separating triangles and square by
a vertex and connect the new vertices by two parallel edges. Now each digon is
partitioned into 4 squares and a new digon. It is easy to see that R(k) is of type (2; 4)n
for n= 2 + 8k(k + 1).

It is proved in GrFunbaum and Zaks (1974) that the number of hexagons of a 2n is
p6 = x2 + xy+ y2 − 1 for some nonnegative integers x; y. Recall that n= 2 + 2p6, i.e.,
n= 2(x2 + xy + y2).

The graph 2n can be obtained by setting digons on edges of some cubic graphs.
We say a digon is set on an edge e of a graph if we set two new vertices on e and
connect them by a new edge parallel to the part of e between these new vertices.

All 2n are face-regular. The minimal graphs 2n are given below with the pairs (i; j)
denoting that they are 2Ri and 6Rj:
n= 2, (x; y) = (1; 0), p6 = 0; (i; j) = (2;−); 22 = K∗

3 , the dual of the triangle K3; it
consists of 3 parallel edges. Strictly speaking, it is not 6Rj since it has no hexagons.
n= 6, (x; y) = (1; 1), p6 = 2; (i; j) = (0; 1); 26 is obtained by setting 3 digons on the

edge of a loop.
n= 8, (x; y) = (2; 0), p6 = 3; (i; j) = (0; 2); 28 is obtained by setting digons on the

3 edges of 22.
n=14; (x; y)=(2; 1), p6=6; (i; j)=(0; 4); 214 is obtained by setting digons on 3 edges

of a cube �3 = 48 such that no pair of digons belongs to the same square of the cube.
n = 18, (x; y) = (3; 0), p6 = 8; (i; j) = (0;−); 218 is obtained by setting digons on

alternating lateral edges of Prism6 = 412.
For all other 2n, we have (i; j) = (0;−). They are obtained by setting digons on

edges common to two adjacent quadrangles of 4n−6 having 3 disjoint pairs of adjacent
quadrangles (i.e., with 4R1).
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The expression n= 2(x2 + xy + y2) is a special case of the following formula:

n= Na(x2 + xy + y2); 26a65 (4)

for the number of vertices of the polyhedron an with a maximal symmetry in its class.
In table below we give value of Na, the minimal polyhedron Pa, its dual P∗

a and the
groups of symmetries Gr;Grh. (Two polyhedra are dual to each other if the vertices
of one corresponds to the faces of the other and vice versa.)

an Pa P∗
a Na Grh ; Gr

2n 22 = K∗
3 K3 2 Dh ; D

3n 24 = �3 �3 4 Th ; T
4n 48 = �3 �3 8 Oh ; O
5n 520 = Dod Ico 20 Ih ; I

Formula (4) and the coincidence of Na with the number of vertices of Pa= number
of faces of P∗

a is not an accident. This is the result of a construction of polyhedra an
that goes back to Goldberg (Goldberg, 1937) (see also Fowler, 1993).

This construction considers duals rather than the an themselves. Each three-valent
vertex of a an corresponds to a triangular face of the dual a∗n , and the face to an a- and
6-valent vertex of the deltahedral dual. The net of an arbitrary an is found by joining
points of a sub-lattice L in the in9nite equilateral triangular lattice L0. The points of
the sub-lattice L correspond to a-valent vertices of the dual deltahedron a∗n . The vector
of L between a neighboring pair of a-valent points of any master polyhedron P∗

a must
be a lattice vector of the triangular net L0. Let x; y be coordinates of the vector in a
natural basis of L0. By folding the net L0 around the master polyhedron P∗

a , various
vertices (and edges) collapse. There are two possible foldings using symmetry G and
Gh of the master polyhedron P∗

a . Surface area of P∗
a is proportional to the number of

small triangles cut from the net. It is easy to see that the number of triangles related
to a triangular face of P∗

a is equal to x2 + xy + y2, and the total number of small
triangles, i.e., the number n of vertices of an, is obtained by the multiplication of the
above binomial on number Na of faces of P∗

a .
All an, 26a65, obtained by this construction have the highest possible (dihedral,

tetrahedral, octahedral, icosahedral) symmetry. It turns out that for 2n, and only for
them, there are no others. In all four cases a = 2; 3; 4; 5, we have the full symmetry
Grh if and only if either x = y or y = 0 (equivalently, x = 0) and Gr, otherwise.

An analogue of the construction of an; 5¿a¿2, of higher symmetry can be applied
to dual (3; 4)n; namely, put in9nite equilateral square lattice on the master polyhedron.
For example, all octahedral (3; 4)n come as duals of those obtained from the cube by
this way.

3. Face-regular polyhedra 3n, 4n and 6 sporadic ones

One can verify by a direct check the following:
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Fact. All 6 bifaced polyhedra of the class (A) above are both aRi and bRj for
(i; j) = (0; 2); (0; 4); (0; 4); (0; 3); (1; 2) and (2; 0), respectively. Their graphs Gb are,
respectively: C3, the skeletons of the octahedron, of APrism4, K2 × K3, C4, C5.

From now on we consider only classes (B) and (C). So (k; b) = (3; 6) or (4, 4),
i.e., we consider only 3n; 4n; 5n and (3; 4)n. Studying polyhedra with bRj we, naturally,
exclude the four Platonic polyhedra 34; 48; 520 and (3; 4)6 having no b-faces.

First observations about bRj give

Lemma 1. For a bifaced polyhedron bRj the following holds:

(i) pb6apa=(b − j) with an equality if and only if it is aR0; if k = 3 and pb¿ 0;
then pb¿(pa=b− j);

(ii) pb = (a− i)pa=(b− j) if the polyhedron is also aRi;
(iii) if (3; 4)n is 4Rj for j = 1; 2; then it is not 3R0;
(iv) if k = 3; then bRj for j¡ (b=2) excludes aR0 and bRb−1 implies aR0; similarly;

aRi for i¡ (a=2); excludes bR0 and aRa−1 implies bR0.

Proof. At 9rst, (i) comes from counting the number of a–a edges as 1
2 (paa − pb

(b− j))¿0. The lower bound comes from the upper bound 1
2pa(a− 1) on the number

of a–a edges and from the fact that the only 3n, 4n and 5n which contain an a-face
surrounded by a-faces only, are Platonic polyhedra. Now, (ii) comes from double
counting of the number of a–b edges. (iii) and (iv) can be easily checked case by
case.

The case (i) of Lemma 1 implies the 9niteness of the number of bifaced polyhedra
bRj. The same upper bound holds even without our restriction b62k=(k− 2), but only
this restriction limits pa.

The double counting of the number of a–b edges also implies the equality 2e(Ga)−
2e(Gb)=apa−bpb for the numbers e(Ga), e(Gb) of edges of Ga, Gb. So, e(Ga)=e(Gb)
if and only if kn= 2apa.

3.1. Face-regular polyhedra 3n

For 3n, Lemma 1 gives a full answer to our problem of classi9cation of aRi and
bRj.

Proposition 1. Any 3n (except the tetrahedron 34) is 3R0. There are exactly 4 poly-
hedra 3n which are 6Rj:

• the truncated tetrahedron 312 for j = 3;
• the chamfered tetrahedron 316 and its twist 316 (coming by the truncation of a

cube on 4 vertices; pairwise at distance 2 for the >rst 316 and on 4 vertices being
end-vertices of two opposite edges for the second 316) for j = 4;
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• a 328 (coming by the truncation of a dodecahedron on 4 vertices pair-wisely at
distance 3) for j = 5.

The graphs Gb of these polyhedra are the skeletons of the tetrahedron; the octa-
hedron and the icosahedron for j = 3; 4; 5; respectively.

Proof. Recall that for 3n, p3=4 by (2), n=4+2p6, and by Lemma 1(i) p6612=(6−j).
Hence, for pb¿ 0, we have

126n64 +
24

6 − j628;

where, recall that the lower bound for pb¿ 0 is given by GrFunbaum (1967). If j62,
the upper bound implies n610, i.e., we have a tetrahedron having no hexagons. Hence
j¿3, and n¿12. We just checked all 3n for n628 (there are 1, 2, 1, 2, 2 polyhedra
3n for n= 12, 16, 20, 24, 28, respectively).

3.2. Face-regular polyhedra 4n

The cube is unique 4n which is 4R4. There is no 4n which is 4R3.

Proposition 2. The only polyhedra 4n which are 4R2 are either 412 = Prism6 or the
family (APrismt+1

3 )∗ = 48+6t ; t¿1; of t-hex-elongated cubes.

Proof. Recall that p4 = 6. Let q0 be a quadrangle of 4n with 4R2. Then q0 is adjacent
to two quadrangles q1 and q2. These quadrangles are adjacent to other quadrangles.
There are two cases: either q1 and q2 are adjacent or not. In the 9rst case, we obtain a
con9guration of 3 quadrangles surrounded by 3 hexagons. This con9guration generates
the family (APrismt

3)∗. In the second case, we obtain a ring of six quadrangles that
uniquely gives Prism6 = 412.

There is also an in9nity of 4R0 and 4R1. If a polyhedron 4n is 4R1, then the 6
quadrangles are partitioned into 3 pairs of adjacent quadrangles. The pairs are separated
by hexagons. Each pair of quadrangles is surrounded by at least one ring of hexagons.
There are 3 polyhedra 4n for n=18; 20; 26, where each pair of quadrangles is surrounded
exactly by one ring of hexagons. Remark that the deletion of the 3 edges, separating
quadrangles in the 3 pairs, (and 6 their end-vertices) from above 418 and 426 produces
bifaced polyhedra Prism6 and dual of 3-augmented Prism3, respectively.

Let P be the skeleton of a polyhedron 4n with 4R1. Zaks (1982) noted a relation
of P to graphs 2n+6. In fact, by setting digons on each edge common to two adjacent
quadrangles in P we get a cubic planar map (with n + 6 vertices) all faces of which
are 3 digons and p′

6 = n=2 + 2 hexagons. Conversely, removing an edge of each of the
3 digons, we get either 4n with 4R1 or 3-cube = 48 or Prism6 = 412.

The authors of GrFunbaum and Zaks (1974) introduce the notion of an m-patch,
m¿ 0, of a map consisting of a digon surrounded by m rings of hexagons. An m-patch
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contains m(m+ 1) hexagons. Obviously, deleting an edge of the digon of an m-patch,
we obtain a pair of adjacent quadrangles surrounded by m− 1 rings of hexagons. Call
this con9guration also m-patch. So, our 1-patch consists of two adjacent quadrangles.
Each 4n with 4R1 contains three non-overlapping mi-patches, mi¿1; i = 1; 2; 3.

There are the two following cases (see GrFunbaum and Zaks, 1974).
Case A: The three patches form a ring R such that the inner D1 and outer D2

domains of R are partitioned into hexagons. In this case m1 = m2 = m3 = m, and the
domains D1 and D2 have equal partitions and contain equal numbers of k+1 hexagons,
where 6k, 06k6m, is the number of edges of each of the boundaries of D1 and D2.
Hence, in case A,

p′
6 = 3m(m+ 1) + k(k + 1):

Case B: The three patches form a string of the outer domain which is partitioned
into hexagons. The string consists of two end-m-patches and one central (m+1)-patch.
The outer domain contains 2( k+1

2 ) +m− k hexagons, 06k6m+ 1. The number p′
6 of

all hexagons is 2m(m+ 1) + (m+ 1)(m+ 2) + k + 1 + m− k, i.e.,

p′
6 = 3(m+ 1)2 + k2 − 1:

Recall that our m-patch contains m(m+1)−2 hexagons. Hence p6 =p′
6 −6, and the

number n=8+2p6 of vertices of 4n is given by the following two-parameter formulae:
Case A:

n= 2(3m(m+ 1) + k(k + 1) − 2); 06k6m; m¿1;

Case B:

n= 2(3m(m+ 2) + k2); 06k6m+ 1; m¿1:

The 3-cube 48, Prism6 = 412 (which are not 4R1, and the six 4R1 polyhedra 4n with
n¡ 46 (see Table 1 below) also as 4R1 492 have the following parameters:

n 8 12 18 20 26 32 36 44 92 92
Case A A B B B A A A A B
m 1 1 1 1 1 2 2 2 3 3
k 0 1 0 1 2 0 1 2 3 1

n= 92 is the smallest number n that is given by both cases A and B.
If we set m = (x + y − 1)=2, k = (x − y − 1)=2 in case A, and m = (x + y)=2 − 1,

k = (x− y)=2 in case B, then both the cases provide the following unique formula for
the number p6 of hexagons in 4n:

p6 = x2 + xy + y2 − 7; 06y6x; x¿2:

Recall that p′
6 =p6 + 6. Here cases A and B correspond to pairs (x; y) of diMerent and

equal parity, respectively. If x=y or y= 0, there is a unique 4n with these parameters
which is 4R1. Otherwise, there are two mirror-symmetries.
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Table 1

n #4n #4R0 #4R1 # 4R2 2K2 + 2K1 K2 + 4K1 P3 + P3

12 1 — — 1 — — —
14 1 — — 1 — — —
16 1 — — — — — 1
18 1 — 1 — — — —
20 3 — 1 1 — — 1
22 1 — — — 1 — —
24 3 1 — — 1 — 1
26 3 — 1 1 1 — —
28 3 — — — 1 1 1
30 2 1 — — 1 — —
32 8 2 1 1 3 — 1
34 3 1 — — 1 1 —
36 7 3 1 — 1 1 1
38 7 1 — 1 3 2 —
40 7 2 — — 2 2 1
42 5 2 — — 2 1 —
44 14 3 1 1 8 1 —

Proposition 3. (i) All triples (i; j; n) such that there exists 4n; both 4Ri and 6Rj are
(2; 0; 12); (2; 2; 14); (1; 3; 20); (2; 4; 20); (0; 3; 24); (1; 4; 26); (0; 4; 32); (0; 5; 56):

(ii) Each of above 8 cases is realized by unique 4n, except the case (0; 4; 32)
realized by the chamfered cube and its twist.

(iii) Prism6=412 (the >rst case in (i) above) is only 6R0. The dual tetrakis snub cube
(the last case in (i)) is unique 6R5. There are no 6R1. The unique 414 = (APrism2

3)∗

(which is also 4R2) and unique 416 are only 6R2. Only 6R3 are cases (1; 3; 20) with
Gb being Prism3; and the truncated octahedron (0; 3; 24) above. All 6R4 are the cases
(2; 4; 20) = (APrism3

3)∗; (1; 4; 26) with Gb being the unique (3; 4)9 and (0; 4; 32) (the
chamfered cube and its twist having Gb as the cuboctahedron and its twist).

All examples of 4n for n644 are given in Table 1. The last 3 columns of Table 1
give numbers of 4n, n644, with the graph Ga of the edge-adjacency of 4-gons equal
to 2K2 + 2K1, K2 + 4K1, P3 + P3, respectively. The polyhedra 4n, n644, are taken
from Dillencourt (1996).

So, all face-regular 4n (except two in9nite sets for 4R0, 4R1) are 9 polyhedra from
Proposition 3(i), the unique 416 and all t-hex-elongated cubes for t ¿ 2.

4. Face-regular fullerenes 5n

The dodecahedron 520 is the unique fullerene which is 5R5.

• The hexagonal barrel Barrel6 = 524 is the unique 5n which is 5R4. It is also 6R0.
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• The only fullerenes with 5R3 are 528(Td) and 532(D3h), which are 6R0 and 6R2,
respectively. All fullerenes 5Ri for i= 3; 4 are the 9rst 3 cases in (i) of Proposition
6 below.
The fullerenes which are 5R2 are distinguished by graphs Ga which are cycles formed

by pentagons. There are the following 5 cases:
(1) Ga = 4C3, (2) Ga = 2C3 + C6, (3) Ga = C3 + C9, (4) Ga = 2C6, (5) Ga = C12.

Proposition 4. The fullerenes which are 5R2 are as follows:

(i) the fullerenes with Gb= 4C3 correspond one-to-one to the polyhedra 3n+8; n¿0;
so; n is divided by 4;

(ii) there is no fullerene with Ga = 2C3 + C6;
(iii) there is the unique fullerene with Ga =C3 +C9; namely 538(C3v) (which is 6R2);
(iv) the fullerenes with Ga = 2C6 are t-elongated 524; i.e:; (2-APrismt+1

6 )∗ = 512t+24,
t¿1;

(v) the fullerenes with Ga=C12 are exactly 4 fullerenes 536(D2d); 544(D3d); 544(D2)
and 548(D6d) (which are not 6Rj for all j) exist if and only if n= 4t, t¿10;

Proof. (i) Clearly, any fullerene 5n with Ga = 4C3 comes by collapsing into a point
of all 4 triangles of a 3n+8, since, by Proposition 1, any 3n for n¿ 4 is 3R0.

(ii) The 6-cycle of pentagons can be considered as a ring with 6 tails, i.e., edges
connecting the vertices of the ring with other vertices. Similarly, the boundary of each
3-cycle of pentagons is a circuit of 9 vertices, six of which are endpoints of 6 tails.
We have to connect the 6 tails of the 6-cycle with 12 tails of two 3-cycles to obtain
a net of hexagons.

The 6-cycle C6 has two domains: outer and inner. There are two cases: either the
two 3-cycles lie in distinct domains or both lie in the same, say, outer, domain. In the
9rst case, by symmetry, we can consider only outer domain. The Euler relation shows
that the boundary circuit of the ring of pentagons should have 3 tails. It is easy to
verify that it is not possible to form a net of hexagons using 3 tails of the 6-cycle and
6 tails of the 3-cycle.

In the second case by the Euler relation we have the 6-cycle with 6 tails and
two 3-cycles CA

3 and CB
3 each with 6 tails. Suppose there is a fullerene containing

this con9guration. Then, in this fullerene, there are chains of hexagons connecting a
pentagon of the 6-cycle and a pentagon of a 3-cycle. Consider such a chain of minimal,
say, q, length. In this case, the 6-cycle is surrounded by q rings each containing 6
hexagons. If we dissect the qth ring of hexagons into two 6-cycles each with 6 tails,
we obtain the 6-cycle surrounded by q − 1 rings. The boundary of the (q − 1)th ring
contains 6 tails.

Let the chain of q hexagons connect the 6-cycle with CA
3 . At least two tails of the

(q − 1)th ring correspond (are connected) to tails of CA
3 . Since the boundary of the

(q − 1)th ring with 6 tails is similar to the boundary of the 6-cycle with 6 tails, our
problem is reduced to the case when two tails of the 6-cycle are connected to two tails
of CA

3 . There are two cases: either endpoints of the two tails of CA
3 are separated on
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the boundary of CA
3 by a vertex or not. We obtain two con9gurations each consisting

of a circuit with vertices having or not having tails. Both these con9gurations have
unique enlarging by hexagons which cannot be glued with the cycle CB

3 having 6 tails.
(iii) This assertion is proved in Deza and Grishukhin (1999b).
(iv) Let C6 and C′

6 be the inner and the outer circuits of a ring of 6 adjacent
quadrangles. We have to set 6 new vertices on edges of C6 and C′

6 such that the 6
quadrangles of the ring are transformed into 6 pentagons. It is not diIcult to verify
that all the new vertices should be set on one of the circuits C6 and C′

6. Let C6 have
no new vertices. Then it is the boundary of a hexagon. A similar assertion is true for
the other 6-cycles of pentagons. This con9guration of two 6-cycles of pentagons and
the condition 5R2 uniquely give the family (2-APrismt+1

6 )∗ consisting of a 6-cycle of
pentagons surrounded by t rings of hexagons (each containing 6 hexagons) and by the
other 6-cycle of pentagons.

(v) This assertion is proved in Deza and Grishukhin (1999b).

Remark. Note the similarity of the assertion (i) of Proposition 4 to the following
assertion:

There is a one-to-one correspondence between polyhedra 4n which are 4R1 and the
polyhedra 2n+6.

There are in9nitely many fullerenes with Ga=4C3: 548(D2) and at least one tetrahe-
dral 5n for n=4(a2+ab+b2)−8 starting with 540(Td); 544(T); 556(Td); 568(T); 576(T);
see Fowler and Cremona (1997) for the case (1). The fullerenes 544(T) and 556(Td) are
also 6R3 and 6R4, respectively. Actually, all face-regular 5n (besides 26 : 1; 30 : 1; 38 : 16
and (0;−); (1;−)) have n divisible by 4.

It looks too hard to describe all fullerenes 5R0, and even simpler fullerenes 5R1. (All
130 of such 5R1 fullerenes for n672 are listed in Fowler (1993); the two smallest are a
550(D3) and the 552(T).) Let X be a con9guration consisting of a hexagon adjacent by
its two opposite edges to two pentagons. Clearly, any fullerene 5n which is 5R1 comes
from a 5n−12 having the 6 con9gurations X by adding in each X an edge end-vertices
of which are the midpoints of the edges of the hexagon of X by which it is adjacent
to pentagons.

Now we list all 26 fullerenes which are 6Rj : 3; 2; 8; 5; 7; 1 for j = 0; : : : ; 5.
It is not diIcult to show that the barrel 524, the 526 and a 528(Td) are the only

fullerenes which are 6R0. A not great enumeration shows that only fullerenes which
are 6R1 are the 528(D2) and the 532(D3).

6R2-con9gurations Gb of hexagons are unions of cycles Cm.

Proposition 5. The only fullerenes which are 6R2 are the following fullerenes:

532(D3h) with Gb = 2C3;
538(C3v) with Gb = C3 + C6;
540(D5d) with Gb = 2C5;
530(D5h) with Gb = C5;
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532(D3d) and 532(D2) both with Gb = C6;
536(D2d) with Gb = C8;
540(D2) with Gb = C10.

Proof. It can be done using n650 and the inequality for 6R2-fullerenes from Lemma
1(i) and scanning the list of small fullerenes in Fowler and Manolopoulos (1995).
But we cannot assert that the list contains all 6R2-fullerenes. Hence we give below a
geometrical proof.

Let a fullerene contain a triple C3 of mutually adjacent hexagons. Then the triple is
surrounded by a ring of 9 pentagons. There are two cases: either the ring of pentagons
is surrounded by a ring of hexagons, or not. In the 9rst case we obtain uniquely the
fullerene 538(C3v) with Gb =C3 +C6, which is the case (3) of fullerenes that are 5R2.
In the second case, we obtain uniquely the fullerene 532(D3h) with Gb = 2C3 such
that the ring of 9 pentagons is surrounded by 3 pentagons and 3 mutually adjacent
hexagons.

Now consider fullerenes containing only rings Cm of hexagons for m¿ 3. Of course,
there is a ring R containing only pentagons inside. We distinguish cases by the number
p of pentagons contained inside the ring R. If p = 1, then the ring R consists of 5
hexagons. Since the fullerene is 6R2; R is surrounded by a ring of 10 pentagons. We
obtain a con9guration which uniquely de9nes the fullerene 540(D5h) with Gb = 2C5,
where the ring of 10 pentagons is surrounded by the second ring of 5 hexagons, and
the outer boundary of the ring is a pentagon.

If p= 2, we obtain, as above, uniquely the fullerene 540(C2), which is not 6R2.
For p = 3, there are 2 con9gurations of 3 pentagons: three mutually adjacent pen-

tagons and a chain of pentagons. We obtain again the fullerene 538(C3v) in the 9rst
case. The other case does not give fullerenes which are 6R2.

For p= 4 and 5, there are 4 and 7 con9gurations of pentagons, respectively. None
of them gives a fullerene which is 6R2.

There are 18 connected con9gurations of 6 pentagons. Only 5 of them give fullerenes
which are 6R2:530(D5h) with Gb=C5; 532(D3d) and 532(D2h) both with Gb=C6; 536(D2d)
with Gb = C8; 540(D2) with Gb = C10.

For 76p612, we do not obtain fullerenes which are 6R2.

In Deza and Grishukhin (1999a), we give another proof of above proposition for
the cases when Gb consists of one circuit Ck; k = 5; 6; 8; 10.

The following 5 fullerenes are 6R3:536(D2); 544(T) which is also 5R2; 548(D3); 552(T)
which is 5R1, and 560(Ih) which is 5R0. Remaining 6R3-fullerenes 5n should have
526n658, but they do not exist (computer check in Brinkmann, 1998).

The following 5 fullerenes are 6R4: a 540(D5d); 556(Td) which is 5R2; 568(Td) which
is 5R1; 580(Ih) which is 5R0, a 580(D5h) which is 5R0. Remaining 6R4-fullerenes 5n
should have 526n678. Computer check by Brinkmann (1998) produced exactly two
6R4 in this range: a 568(D3d) coming from 560(Ih) by triakon capping (i.e., from an
interior point of 6-face to the mid-points of its 3 alternated edges) of 2 opposite 6-faces,
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and a 572(D2d). Their Ga are 2K3+6K1 and 4K2+4K1; their Gb are skeletons of 4-valent
polyhedra with p= (p3 = 18; p5 = 6; p6 = 2) and p= (p3 = 20; p5 = p6 = 4). (So, in
their duals, isolated 5-gons are caps of 5-faces of Gb while triples or pairs of 5-gons
go on 6-faces of Gb.) 6R4-fullerenes 568(Td) and a 572(D2d) come from 556(Td) by the
addition of bridges, i.e., new edges connecting the mid-points of opposite edges of a
hexagon. Any two triples of pentagons in 556(Td) are separated by a hexagon. Addition
of a bridge on each of those 6 hexagons, produces 568(Td). (By the same addition of 4
bridges on hexagons separating 4 triples of pentagons, 6R3; 5R1 fullerene 552(T) comes
from 6R3; 5R2 fullerene 544(T).) Addition of 4 bridges, corresponding to 4 triples (of
adjacent pentagons) seen as a 4-cycle, gives a 564, having Ga=4K2 +4K1, with 4-cycle
of pairs of adjacent pentagons separated by a hexagon. Addition of 4 bridges, one on
each separating hexagon, gives 6R4-fullerenes 572(D2d).

The fullerenes 5n which are both 5Ri and 6Rj have n=20+24(5− i)=(6−j). Taking
such fullerenes from the above list of fullerenes which are 5Ri and=or 6Rj, we obtain

Proposition 6. (i) All (i; j; n) such that there exists 5n; both 5Ri and 6Rj are:
(4; 0; 24); (3; 0; 28); (3; 2; 32); (2; 2; 38); (2; 3; 44); (1; 3; 52); (2; 4; 56); (0; 3; 60),
(1; 4; 68); (0; 4; 80); (0; 5; 140).

Their Gb are; respectively; 2K1; 4K1; 2C3; C10; truncated tetrahedron; chamfered
tetrahedron; a 4-valent polyhedron with p = (p3 = 14; p6 = 6); the dodecahedron; a
4-valent polyhedron with p= (p3 = 20; p6 = 6); the icosidodecahedron; its twist; snub
dodecahedron.

(ii) Each of the above 11 cases is realized by the following (unique with their
symmetry) fullerenes:

524(D6d); 528(Td); 532(D3h); 538(C3v); 544(T); 552(T); 556(Td); 560(Ih); 568(Td);
580(Ih); 580(D5h); 5140(I).

(iii) For (i; j; n) = (0; 4; 80) there is exactly one other fullerene: 580(D5h) = twisted
chamfered dodecahedron. The fullerenes of other 10 cases are unique.

(iv) 5140(I) is unique 6R5; 524; 526; 528(Td) are only 6R0 (their duals and the icosa-
hedron are called Frank–Kasper polyhedra in chemical physics; they appear also as
disclinations (rotational defects) of local icosahedral order).

For n¡ 82, there are 15, 4, 4 fullerenes from 3 respective in9nite series: (0;−);
(2;−) with G5 = 2C6; (2;−) with G5 = 4C3; there are 75 fullerenes (1;−) for n¡ 74.

In Table 2 we give also the graphs Ga and Gb (of adjacencies of 5- and 6-faces,
respectively). We use the following notation:
Cn; Pn; Kn are the cycle, the path and the complete graph, all on n vertices. Trun-

cated K4 means the skeleton of the truncated tetrahedron. Ĉn is a wheel, i.e., Cn plus
an universal vertex. We suppose below that the set of n vertices of a graph is the set
{1; 2; : : : ; n}:
G1 = C6 with additional edges (1; 5); (5; 2); (2; 4);
G2 = C6 with additional edges (1; 3); (3; 5); (5; 1);
G3 = P5 with additional edges (2; 6); (3; 6); (4; 6), where 6 is a new vertex;



M. Deza, V. Grishukhin / Journal of Statistical Planning and Inference 95 (2001) 175–195 189

Table 2

No. in (Fowler and Symmetry ∗ (i; j) Ga Gb
Manolopoulos, 1995) if unique in 5Ri; 6Rj

(i) All face-regular fullerenes with at most 50 vertices

20 : 1 Ih ∗ (5;−) Icosahedron —
24 : 1 D6d ∗ (4; 0) APrism6 2K1
26 : 1 D3h ∗ (−; 0) G7 3K1
28 : 1 D2 ∗ (−; 1) G8 2K2
28 : 2 Td ∗ (3; 0) Truncated K4 4K1

30 : 1 D5h ∗ (−; 2) 2Ĉ5 C5

32 : 2 D2 ∗ (−; 2) 2G1 C6
32 : 3 D3d ∗ (−; 2) 2G2 C6
32 : 5 D3h ∗ (3; 2) G4 2C3
32 : 6 D3 ∗ (−; 1) G9 3K2
36 : 2 D2 (−; 3) 2G1 G5

36 : 6 D2d (−; 2) 2G3 C8
36 : 14 D2d (2;−) C12 2P4
36 : 15 D6h ∗ (2;−) 2C6 C6 + 2K1
38 : 16 C3v ∗ (2; 2) C3 + C9 C3 + C6

40 : 1 D5d (−; 4) 2Ĉ5 APrism5

40 : 38 D2 (−; 2) 2P6 C10
40 : 39 D5d (−; 2) C10 + 2K1 2C5

40 : 40 Td ∗ (2;−) 4C3 G6
44 : 73 T ∗ (2; 3) 4C3 Truncated K4
44 : 85 D2 (2;−) C12 2G1
44 : 86 D3d (2;−) C12 2G2
48 : 144 D2 (2;−) 4C3 G11

48 : 186 D6d (2;−) C12 2Ĉ6
48 : 188 D3 ∗ (−; 3) 3P4 G10
48 : 189 D6d (2;−) 2C6 APrism6 + 2K1
50 : 270 D3 (1;−) 6K2 G12

(ii) All fullerenes 5n both 5Ri and 6Rj with n¿ 50

52 T ∗ (1; 3) 6K2 Chamfered K4
56 Td ∗ (2; 4) 4C3 4-valent, p = (p3 = 14; p6 = 6)
60 Ih ∗ (0; 3) 12K1 Dodecahedron
68 Td ∗ (1; 4) 6K2 4-valent, p = (p3 = 20; p6 = 6)
80 Ih ∗ (0; 4) 12K1 Icosidodecahedron
80 D5h ∗ (0; 4) 12K1 Its twist

140 I ∗ (0; 5) 12K1 Snub dodecahedron

G4=C9 with additional edges (1; 10); (2; 10); (3; 10); (4; 11); (5; 11); (6; 11); (7; 12);
(8; 12); (9; 12), where 10, 11 and 12 are new vertices;
G5 =C6 with additional edges (1; 7); (2; 7); (3; 7); (4; 8); (5; 8); (6; 8), where 7 and

8 are new vertices;
G6 =C8 with additional edges (1; 9); (9; 5); (3; 10); (10; 7), where 9 and 10 are new

vertices;
G7=C6 andC′

6 with additional edges (1,3), (3,5), (5,1), (1′; 3′); (3′; 5′); (5′; 1′); (2; 2′);
(4; 4′); (6; 6′);
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G8= two isomorphic graphs G1 and G′
1 connected by edges (x; x′) and (y; y′), where

x; y and x′; y′ are pairs of vertices of valency 2 in G1 and G′
1, respectively;

G9 =C8 with additional edges (1; 9); (2; 9); (9; 10); (10; 11); (5; 11); (6; 11), where
9, 10, 11 are new vertices;
G10=3 isomorphic graphsG3,G′

3 andG′′
3 with identi9ed vertices x=x′=x′′ and y=y′=

y′′, where x; y, x′; y′ and x′′; y′′ are pairs of vertices of valency 1 in each of the 3 graphs;
G11= two isomorphic graphs G1 and G′

1 with additional edges (3; 3′); (6; 6′); (2; 7);
(2′; 7); (5; 8); (5′; 8); without the new vertices 7 and 8 it is G8;
G12= DFurer octahedron plus 3 new vertices; the midpoints of 3 edges which are

disjoint pairwise and with each triangle.
The asterisk ‘∗’ in the symmetry column of Table 2 means that the fullerene is

unique with this symmetry and corresponding number of vertices.
Call a fullerene quasi-6Rj if the number of 5–6 edges divided by the number of

hexagons is 6 − j. If it is, moreover, not 6Rj, then call it proper quasi-6Rj. There are
in all 65 proper quasi-6Rj with at most 50 vertices: 3, 2, 4, 17, 1, 38 for (n; j) =
(36; 2); (38; 2); (40; 3); (44; 3); (48; 4); (48; 3), respectively. The unique case of j= 4
above is the fullerene 48 : 1. Among above 65 fullerenes only 38 : 10 and 38 : 14 are also
quasi-5Ri, i.e., the number of 5–6 edges is divided by the number 12 of pentagons. In
fact, they are both proper quasi-5R2 and quasi-6R2. The second one looks as a double
spiral: its 5-graph Ga is the path P12 with an additional edge (1; 3) and its 6-graph Gb
is the path P9 with an edge (1; 3). The fullerenes 44 : 85; 86 in Table 2 are quasi-6R3

while 32 : 2; 3 and 36 : 2 are quasi-5R3.
Some similarities between the graphs Ga; Gb and between symmetries in Table 2

indicate examples of operations on fullerenes (Fig. 1):
(i) 30 : 1 and 40 : 1 have the same graph Ga=2Ĉ5 and they belong (for t=1; 2) to the

sequence of t-hex-elongated dodecahedron 520, i.e., the dual of column of t+1 APrism5

capped on 2 opposite 5-faces;
(ii) by deleting 4 points of K1;3 in any triple of adjacent pentagons, we obtain 28 :

2, 40 : 40 from 44 : 73 and the 556(Td), respectively;
(iii) bydeleting all six 5–5edges from theunique556(D3d)which is 5R1,weobtain44:86;
(iv) all 5 (resp. 4) fullerenes having a cycle as Gb (resp. Ga) are given in Table 2.

A cutting of each hexagon in the cycle into two pentagons produces 44 : 85, 44 : 86, 40
: 39 from 32 : 2, 32 : 3, 30 : 1, respectively. The same cutting of hexagons of the 6-cycle
(of hexagons) produces 48 : 186 from 36 : 15. The same cutting of alternating hexagons
of the 8-cycle (of hexagons) produces 544 from 36 : 6. The 5-graph Ga of 40 : 38 is
2P6 while the 6-graph Gb of 36 : 14 is 2P4.

5. Face-regular polyhedra (3; 4)n

Proposition 7. All polyhedra (3; 4)n which are 4Rj are as follows:
(i) 3 polyhedra 4R0: APrism4 = (3; 4)8 which is 3R2 with Gb = 2K1; the (3; 4)9 with

Gb = 3K1 and the cuboctahedron (3; 4)12 which is 3R0 with Gb = 6K1;
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Fig. 1. All 34 face-regular fullerenes (i), (ii) of Table 2 in the order are given here.

(ii) 2 polyhedra 4R1: a (3; 4)10 with Gb = 2K2; Ga = 2P4 and a (3; 4)12 which is the
twisted cuboctahedron with Gb = 3K2;

(iii) 5 polyhedra 4R2: 2-Prism4 = (3; 4)10 which is 3R2 with Gb = C4; two (3; 4)12

with Gb=C6 and two non-isomorphic (3; 4)14; both are 3R1; with Gb=C8 and Gb=2C4;
(iv) 3 polyhedra 4R3: 2-Prism2

4=(3; 4)14 which is 3R2; a (3; 4)22 which is 3R1 and the
cross-capped truncated cube (3; 4)30 which is 3R0. Gb graphs of these polyhedra are
planar cubic graphs consisting of quadrangles and hexagons. They are skeletons of
the cube 46; the unique polyhedron 416; and the truncated octahedron 424; respectively.

Proof. The properties 4Ri and 3Rj give rather restrictive conditions on adjacencies of
triangles and quadrangles. Not very complicated enumeration of possible con9gurations
provide the con9gurations described in items (i)–(iv) of the proposition.

Taking from polyhedra of Proposition 7, ones that are 3Ri, we obtain
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Corollary 1. (i) All (i; j; n) such that there exists (3; 4)n both 3Ri and 4Rj are as
follows: (2; 0; 8); (2; 2; 10); (0; 0; 12); (1; 2; 14); (2; 3; 14); (1; 3; 22); (0; 3; 30).

(ii) Each; except (1; 2; 14); of the above 7 cases is realized by unique (3; 4)n :
APrism4 = (3; 4)8; 2-Prism4 = (3; 4)10; the cuboctahedron=(3; 4)12; 2-Prism2

4 = (3; 4)14;
a (3; 4)22 and the cross-capped truncated cube=(3; 4)30.

It looks too hard to describe all (3; 4)n which are 3R0; for example, the ambo (i.e.,
the convex hull of the mid-points of all edges) of (3; 4)n is (3; 4)2n which is 3R0.

There are other operations to obtain one (3; 4)n from another. In Manca (1979), four
operations are given that transform a 4-valent planar graph into another 4-valent planar
graph with more vertices.

The 9rst 3 of these operations can be applied to (3; 4)n such that the obtained
polyhedra belong again to the class (3; 4)n. But, unfortunately, there are polyhedra
(3; 4)n that cannot be obtained by these operations from a (3; 4)n′ with n′¡n. In other
words, these polyhedra can be obtained from another (3; 4)n′ by a sequence of these
operations such that intermediate polyhedra do not belong to the class (3; 4)n.

There are operations that transform polyhedra of the class (3; 4)n with 3R1 again into
polyhedra of this class with 3R1 and more vertices. This shows that there are in9nitely
many polyhedra with 3R1.

There is the following bijection between polyhedra (3; 4)n with 3R1 and polyhedra
(3; 4)n with 3R0 such that the 8 triangles of last polyhedra are partitioned into 4 disjoint
pairs of triangles having exactly one common point. Delete, in any (3; 4)n which is
3R1, 4 edges separating triangles in the 4 pairs. The dual of obtained polyhedron is a
(3; 4)n−2 which is 3R0 with above adjacencies of triangles.

But the case of 3R2 is much simpler; we have the following:

Proposition 8. The only polyhedra (3; 4)n which are 3R2 are either (3; 4)8 = APrism4

or the family 2-Prismt4; t¿1; of t-elongated octahedra.

Proof. Let t0 be a triangle of (3; 4)n with 3R2. Then t0 is adjacent to two triangles t1
and t2. These triangles are adjacent to other triangles. There are two cases: either t1 and
t2 have or have not a common second adjacent triangle. In the 9rst case, we obtain a
con9guration of 4 triangles surrounded by 4 quadrangles. This con9guration generates
the family 2-Prismt

4. In the second case, we obtain, uniquely, APrism4 = (3; 4)8.

All face-regular (3; 4)n (except two in9nite sets for 3R0, 3R1) are 8 polyhedra from
Corollary 1, the unique (3; 4)9, the twisted cuboctahedron (3; 4)12, a (3; 4)10, a (3; 4)12

and all t-elongated octahedra for t ¿ 2. The rhombicuboctahedron and its twist are
(3; 4)24 which are 3R0. Their graphs Gb are the octahedron plus a new vertex on each
edge and, respectively, C8+K9;1;3;5;7+K10;2;4;6;8. The snub cube is a 5-valent polyhedron
with p= (p3 = 32; p4 = 6) obtained from the rhombicuboctahedron by cutting 12 of
its squares into two triangles; its graph Gb is the cube plus two new vertices on
each edge.



M. Deza, V. Grishukhin / Journal of Statistical Planning and Inference 95 (2001) 175–195 193

Remark that dual (3; 4)n are exactly the case d= 3 of almost simple cubical d-poly-
topes in terms of Blind and Blind (1998). Actually, Blind and Blind (1998) character-
izes those d-polytopes for d¿4. It is not diIcult to enumerate them for d = 2; they
are P2 × Pn, for any 9nite n and n= Z+; Z and the cube with deleted vertex or edge.
But this variety becomes too rich for d= 3.

Heidemeier (1998) computed the number of polyhedra (3; 4)n for all n= 6; 7; : : : ; 50.
It is 1, 0, 1, 1, 2, 1, 5, 2, 8, 5, 12, 8, 25, 13, 30, 23, 51, 33, 76, 51, 109, 78, 144,
106, 218 for n= 6; : : : ; 30.

6. Some remarks

Among face-regular bifaced polyhedra, which are both aRi and bRj, the most inter-
esting are those that satisfy the following conditions:

(a) (i; j) = (0; b− 1): dual 2-capped APrism4, DFurer’s octahedron, the dual 4-triakis
snub tetrahedron 328(T), the dual tetrakis snub cube 456(O), the dual pentakis snub
dodecahedron 5140(I) and the cross-capped truncated cube (3; 4)30(O).

(b) pa = pb: dual bidishpenoid, the truncated tetrahedron 312, two 420; 544(T) and
three (3; 4)14 with (i; j;pa) = (1; 2; 4); (0; 3; 4); (2; 4; 6); (1; 3; 6); (2; 3; 12); (1; 2; 8);
(1; 2; 8); (2; 3; 8); respectively.

(c) i= j: 414 = (APrism2
3)∗; 538(C3v) and (3; 4)10 = 2-Prism4, each has i= j= 2 and

consists of concentric belts of a- or b-gons (belts sizes are 3, 3, 3 for above 414, 3, 6,
9, 3 for 538(C3v) and 4 ,4 ,4 for 2-Prism4).

All bifaced polyhedra with all a-faces forming a ring are: Prism5, Prism6, APrism4

and 4 fullerenes with 36, 44, 44, 48 vertices. All bifaced polyhedra with all b-faces
forming a ring are: Prism3, dual of bidisphenoid, the 414, the 416; 2-Prism4, a (3; 4)12,
a (3; 4)14 and 5 fullerenes with 30, 32, 32, 36, 40 vertices.

It turns out that all bRj bifaced polyhedra with j¿ 2 have as Gb, the skeleton of
a bRj′ bifaced (or regular) polyhedra. In particular, all three bR4 polyhedra 4n (n =
26; 32; 32) have as Gb, polyhedra (3; 4)n, and all three bR3 polyhedra (3; 4)n (n =
14; 22; 30) have as Gb, polyhedra 4n.

The face-regularity aRi or bRj can be compared with other, relevant for applications
of topological indices of a bifaced polyhedron. For example, it can be compared with
description of vertices by the vertex type or with the pair (qa; qb), where qa (resp. qb)
is the number of maximal connected sets of a-gons (resp. b-gons). Here we call a set of
faces connected if its graph Ga (resp. Gb) is connected. For example, qa+qb6pa+pb
with equality for the cuboctahedron; qa = pa or 1

2pa, if a bifaced polyhedron is aR0

or aR1, respectively.
It will be interesting to identify face-regular polyhedra among the following simple

polyhedra, generalizing those considered in this paper (see GrFunbaum, 1967 for the
existence):

(1) with p= (p3 = 2; p4 = 3; p6); it exists unless p6 = 1; 3; 7;
(2) with p = (p4; p5 = 12 − 2p4; p6); it exists unless (p4; p6) = (1; 0); (i; 1) for
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i=0; 1; 5; 6; 3) with p=(p3; p5 =12−3p3; p6); it exists unless (p3; p6)=(0; 1); (1; i)
for i = 0; 1; 2; 4 or (2,1), (3; i) for i = 0; 2; 4 or (4,2), (4, any odd).

One can look for face-regular bifaced in9nite polyhedra, i.e., partitions of Euclidean
plane. For example, all 6 bifaced Archimedean plane partitions are face-regular. In fact,
(3.6.3.6), (4.8.8), (3.12.12), (3.3.3.3.6), (3.3.3.4.4), (3.3.4.3.4) are (0,0), (0,4), (0,6),
(−; 0), (2, 2), (1, 0), respectively.

There are face-regular simple polyhedra with p= (p5; pb); b¿ 6. Icosahedral poly-
hedra with p= (p5 = 72; p6+i = 60=i) for i= 1; 2; 3 (so, n= 140 + 120=i) with Gb being
snub dodecahedron, icosidodecahedron, dodecahedron, respectively, are b-face-regular
(6 + i)R(6−i). On the other hand, following 3 simple bifaced polyhedra are (3,0)
face-regular. They have p= (p5 = 12; p6 = 4), (p5 = 24; p8 = 6), (p5 = 60; p10 = 12)
and n = 28; 56; 140, respectively. Their G5 is truncated tetrahedron, truncated cube,
truncated dodecahedron and they have tetrahedral, octahedral, icosahedral symmetry,
respectively. They come as a triakon decoration of all 4, 8, 20 hexagons of truncated
tetrahedron, truncated octahedron, truncated icosahedron, respectively.

Finally, the quotient (by the antipodal map) of any centrally symmetric polyhedron
can be realized (and its f- and p-vectors will be halved) on the real projective plane
P2. The centrally symmetric polyhedra have symmetry Ci, Th, Oh, Ih or Cnh, Dnh for
even n and Dnd for odd n; so the fullerenes among them have symmetry Ci, C2h,
D2h, D6h, D3d, D5d, Th, Ih. The results of this paper imply similar classi9cations of
face-regular bifaced maps on P2; for example, the quotient of the cuboctahedron (3; 4)12

is the heptahedron, which is also 3R0 and 4R0. But face-adjacency should be counted,
sometimes, with multiplicity: for example, any two 5-gonal faces of the quotient of
DFurer octahedron (it is 5R4 and it is unique centrally symmetric one among 6 sporadic
polyhedra, given in (A) of Section 1) intersect in two edges.
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